重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。 可以通过索引来实现多个操作 – 重新排序现有数据以匹配一组新的标签。 在没有标签数据的标签位置插入缺失…
分类:Pandas教程
Pandas系列
系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。 pandas.Series Pandas系列可以使用以下构造函数创建 – panda…
Pandas基本功能
到目前为止,我们了解了三种Pandas数据结构以及如何创建它们。接下来将主要关注数据帧(DataFrame)对象,因为它在实时数据处理中非常重要,并且还讨论其他数据结构。 系列基本功能 编号 属性或方法 描述 1 axe…
Pandas合并/连接
Pandas具有功能全面的高性能内存中连接操作,与SQL等关系数据库非常相似。Pandas提供了一个单独的merge()函数,作为DataFrame对象之间所有标准数据库连接操作的入口 – pd.merge(…
Pandas选项和自定义
Pandas提供API来自定义其行为的某些方面,大多使用来显示。 API由五个相关函数组成。它们分别是 – get_option() set_option() reset_option() describe_…
Pandas窗口函数
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重。 其中包括总和,均值,中位数,方差,协方差,相关性等。 下来学习如何在DataFrame对象上应用上提及的每种方法。 .rolling(…
Pandas分组(GroupBy)
任何分组(groupby)操作都涉及原始对象的以下操作之一。它们是 – 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数。在应用函数中,可以执行以下操作 &…
Pandas分类数据
通常实时的数据包括重复的文本列。例如:性别,国家和代码等特征总是重复的。这些是分类数据的例子。 分类变量只能采用有限的数量,而且通常是固定的数量。除了固定长度,分类数据可能有顺序,但不能执行数字操作。 分类是Pandas…
Pandas级联
Pandas提供了各种工具(功能),可以轻松地将Series,DataFrame和Panel对象组合在一起。 pd.concat(objs,axis=0,join='outer',join_axes=None, igno…
Pandas迭代
Pandas对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFrame和Panel,遵循类似惯例迭代对象的键。 简而言之,基本迭代(对于i在对象中)产生…
Pandas注意事项&窍门
警告和疑难意味着一个看不见的问题。在使用Pandas过程中,需要特别注意的地方。 与Pandas一起使用If/Truth语句 当尝试将某些东西转换成布尔值时,Pandas遵循了一个错误的惯例。 这种情况发生在使用布尔运算…
Pandas缺失数据
数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。 何时以及为什么数据丢失? 想…