Pandas提供了各种工具(功能),可以轻松地将Series
,DataFrame
和Panel
对象组合在一起。
pd.concat(objs,axis=0,join='outer',join_axes=None,
ignore_index=False)
其中,
- objs – 这是Series,DataFrame或Panel对象的序列或映射。
- axis –
{0,1,...}
,默认为0
,这是连接的轴。 - join –
{'inner', 'outer'}
,默认inner
。如何处理其他轴上的索引。联合的外部和交叉的内部。 - ignore_index − 布尔值,默认为
False
。如果指定为True
,则不要使用连接轴上的索引值。结果轴将被标记为:0,...,n-1
。 - join_axes – 这是Index对象的列表。用于其他
(n-1)
轴的特定索引,而不是执行内部/外部集逻辑。
连接对象
concat()
函数完成了沿轴执行级联操作的所有重要工作。下面代码中,创建不同的对象并进行连接。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two])
print(rs)
执行上面示例代码,得到以下结果 –
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
假设想把特定的键与每个碎片的DataFrame关联起来。可以通过使用键参数来实现这一点 –
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two],keys=['x','y'])
print(rs)
执行上面示例代码,得到以下结果 –
Marks_scored Name subject_id
x 1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
y 1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
结果的索引是重复的; 每个索引重复。如果想要生成的对象必须遵循自己的索引,请将ignore_index
设置为True
。参考以下示例代码 –
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)
print(rs)
执行上面示例代码,得到以下结果 –
Marks_scored Name subject_id
0 98 Alex sub1
1 90 Amy sub2
2 87 Allen sub4
3 69 Alice sub6
4 78 Ayoung sub5
5 89 Billy sub2
6 80 Brian sub4
7 79 Bran sub3
8 97 Bryce sub6
9 88 Betty sub5
观察,索引完全改变,键也被覆盖。如果需要沿axis=1
添加两个对象,则会添加新列。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = pd.concat([one,two],axis=1)
print(rs)
执行上面示例代码,得到以下结果 –
Marks_scored Name subject_id Marks_scored Name subject_id
1 98 Alex sub1 89 Billy sub2
2 90 Amy sub2 80 Brian sub4
3 87 Allen sub4 79 Bran sub3
4 69 Alice sub6 97 Bryce sub6
5 78 Ayoung sub5 88 Betty sub5
使用附加连接
连接的一个有用的快捷方式是在Series和DataFrame实例的append
方法。这些方法实际上早于concat()
方法。 它们沿axis=0
连接,即索引 –
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = one.append(two)
print(rs)
执行上面示例代码,得到以下结果 –
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
append()
函数也可以带多个对象 –
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
rs = one.append([two,one,two])
print(rs)
执行上面示例代码,得到以下结果 –
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
时间序列
Pandas为时间序列数据的工作时间提供了一个强大的工具,尤其是在金融领域。在处理时间序列数据时,我们经常遇到以下情况 –
- 生成时间序列
- 将时间序列转换为不同的频率
Pandas提供了一个相对紧凑和自包含的工具来执行上述任务。
获取当前时间
datetime.now()
用于获取当前的日期和时间。
import pandas as pd
print pd.datetime.now()
上述代码执行结果如下 –
2017-11-03 02:17:45.997992
创建一个时间戳
时间戳数据是时间序列数据的最基本类型,它将数值与时间点相关联。 对于Pandas对象来说,意味着使用时间点。举个例子 –
import pandas as pd
time = pd.Timestamp('2018-11-01')
print(time)
执行上面示例代码,得到以下结果 –
2018-11-01 00:00:00
也可以转换整数或浮动时期。这些的默认单位是纳秒(因为这些是如何存储时间戳的)。 然而,时代往往存储在另一个可以指定的单元中。 再举一个例子 –
import pandas as pd
time = pd.Timestamp(1588686880,unit='s')
print(time)
执行上面示例代码,得到以下结果 –
2020-05-05 13:54:40
创建一个时间范围
import pandas as pd
time = pd.date_range("12:00", "23:59", freq="30min").time
print(time)
执行上面示例代码,得到以下结果 –
[datetime.time(12, 0) datetime.time(12, 30) datetime.time(13, 0)
datetime.time(13, 30) datetime.time(14, 0) datetime.time(14, 30)
datetime.time(15, 0) datetime.time(15, 30) datetime.time(16, 0)
datetime.time(16, 30) datetime.time(17, 0) datetime.time(17, 30)
datetime.time(18, 0) datetime.time(18, 30) datetime.time(19, 0)
datetime.time(19, 30) datetime.time(20, 0) datetime.time(20, 30)
datetime.time(21, 0) datetime.time(21, 30) datetime.time(22, 0)
datetime.time(22, 30) datetime.time(23, 0) datetime.time(23, 30)]
改变时间的频率
import pandas as pd
time = pd.date_range("12:00", "23:59", freq="H").time
print(time)
执行上面示例代码,得到以下结果 –
[datetime.time(12, 0) datetime.time(13, 0) datetime.time(14, 0)
datetime.time(15, 0) datetime.time(16, 0) datetime.time(17, 0)
datetime.time(18, 0) datetime.time(19, 0) datetime.time(20, 0)
datetime.time(21, 0) datetime.time(22, 0) datetime.time(23, 0)]
转换为时间戳
要转换类似日期的对象(例如字符串,时代或混合)的序列或类似列表的对象,可以使用to_datetime
函数。当传递时将返回一个Series(具有相同的索引),而类似列表被转换为DatetimeIndex
。 看看下面的例子 –
import pandas as pd
time = pd.to_datetime(pd.Series(['Jul 31, 2009','2019-10-10', None]))
print(time)
执行上面示例代码,得到以下结果 –
0 2009-07-31
1 2019-10-10
2 NaT
dtype: datetime64[ns]
NaT
表示不是一个时间的值(相当于NaN
)
举一个例子,
import pandas as pd
import pandas as pd
time = pd.to_datetime(['2009/11/23', '2019.12.31', None])
print(time)
执行上面示例代码,得到以下结果 –
DatetimeIndex(['2009-11-23', '2019-12-31', 'NaT'], dtype='datetime64[ns]', freq=None)