参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创
视频教程: http://pan.baidu.com/s/1kVNe5EJ
1. 关于非线性转化方程(non-linear transformation function)
sigmoid函数(S 曲线)用来作为activation function:
1.1 双曲函数(tanh) 1.2 逻辑函数(logistic function)
2. 实现一个简单的神经网络算法
import numpy as np
def tanh(x): return np.tanh(x)
def tanh_deriv(x): return 1.0 – np.tanh(x)*np.tanh(x)
def logistic(x): return 1/(1 + np.exp(-x))
def logistic_derivative(x): return logistic(x)*(1-logistic(x))
class NeuralNetwork: def __init__(self, layers, activation=’tanh’): “”” :param layers: A list containing the number of units in each layer. Should be at least two values :param activation: The activation function to be used. Can be “logistic” or “tanh” “”” if activation == ‘logistic’: self.activation = logistic self.activation_deriv = logistic_derivative elif activation == ‘tanh’: self.activation = tanh self.activation_deriv = tanh_deriv self.weights = [] for i in range(1, len(layers) – 1): self.weights.append((2*np.random.random((layers[i – 1] + 1, layers[i] + 1))-1)*0.25) self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25) def fit(self, X, y, learning_rate=0.2, epochs=10000): X = np.atleast_2d(X) temp = np.ones([X.shape[0], X.shape[1]+1]) temp[:, 0:-1] = X # adding the bias unit to the input layer X = temp y = np.array(y) for k in range(epochs): i = np.random.randint(X.shape[0]) a = [X[i]] for l in range(len(self.weights)): #going forward network, for each layer a.append(self.activation(np.dot(a[l], self.weights[l]))) #Computer the node value for each layer (O_i) using activation function error = y[i] – a[-1] #Computer the error at the top layer deltas = [error * self.activation_deriv(a[-1])] #For output layer, Err calculation (delta is updated error) #Staring backprobagation for l in range(len(a) – 2, 0, -1): # we need to begin at the second to last layer #Compute the updated error (i,e, deltas) for each node going from top layer to input layer deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l])) deltas.reverse() for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0]+1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a