《Tensorflow机器学习实战指南》神经网络算法,示例代码中,有几处小的错误,做了修改。
1. 是数据做归一化的时候,多做了一次,需要删除。
2. 训练完成后,使用真实数据做预测时,数据做归一化时少了两个变量。(ValueError: setting an array element with a sequence.)
3. 网络数据运行时拿不下来,建议直接将url放到浏览器上获取数据后直接保存到本地。当然,也可以使用urllib.request进行处理,这里是直接通过浏览器下传下来进行处理的,这样处理起来比较方便。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
“””
Using a Multiple Layer Network
——————————
We will illustrate how to use a Multiple
Layer Network in TensorFlow
Low Birthrate data:
Columns Variable Abbreviation
—————————————————————-
Low Birth Weight (0 = Birth Weight >= 2500g, LOW
1 = Birth Weight < 2500g)
Age of the Mother in Years AGE
Weight in Pounds at the Last Menstrual Period LWT
Race (1 = White, 2 = Black, 3 = Other) RACE
Smoking Status During Pregnancy (1 = Yes, 0 = No) SMOKE
History of Premature Labor (0 = None 1 = One, etc.) PTL
History of Hypertension (1 = Yes, 0 = No) HT
Presence of Uterine Irritability (1 = Yes, 0 = No) UI
Birth Weight in Grams BWT
—————————————————————–
The multiple neural network layer we will create will be composed of
three fully connected hidden layers, with node sizes 50, 25, and 5
“””
import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import os
import numpy as np
import requests
from tensorflow.python.framework import ops
# name of data file
birth_weight_file = r’/home/liuqp1/Documents/wspy/tensorflow_workspacebirth_weight.csv’
birthdata_url = r’https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat’
# Download data and create data file if file does not exist in current directory
if not os.path.exists(birth_weight_file):
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split(‘\r\n’)
birth_header = birth_data[0].split(‘\t’)
birth_data = [[float(x) for x in y.split(‘\t’) if len(x) >= 1]
for y in birth_data[1:] if len(y) >= 1]
with open(birth_weight_file, “w”) as f:
writer = csv.writer(f)
writer.writerows([birth_header])
writer.writerows(birth_data)
# read birth weight data into memory
birth_data = []
with open(birth_weight_file, newline=”) as csvfile:
csv_reader = csv.reader(csvfile)
birth_header = next(csv_reader)
for row in csv_reader:
birth_data.append(row)
birth_data = [[float(x) for x in row] for row in birth_data]
# Extract y-target (birth weight)
y_vals = np.array([x[8] for x in birth_data])
# Filter for features of interest
cols_of_interest = [‘AGE’, ‘LWT’, ‘RACE’, ‘SMOKE’, ‘PTL’, ‘HT’, ‘UI’]
x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest]
for x in birth_data])
# Reset the graph for new run
ops.reset_default_graph()
# Create graph session
sess = tf.Session()
# set batch size for training
batch_size = 100
# Set random seed to make results reproducible
seed = 4
np.random.seed(seed)
tf.set_random_seed(seed)
# Split data into train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) – set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
# Normalize by column (min-max norm to be between 0 and 1)
def normalize_cols(m, col_min=np.array([None]), col_max=np.array([None])):
if not col_min[0]:
col_min = m.min(axis=0)
if not col_max[0]:
col_max = m.max(axis=0)
return (m – col_min) / (col_max – col_min), col_min, col_max
x_vals_train, train_min, train_max = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test, _, _ = np.nan_to_num(normalize_cols(x_vals_test, train_min, train_max))
print(‘x_vals_train: ‘, x_vals_train)
print(‘x_vals_test: ‘, x_vals_test)
# x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, train_max, train_min))
# x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, train_max, train_min))
# print(‘x_vals_train: ‘, x_vals_train)
# print(‘x_vals_test: ‘, x_vals_test)
# Define Variable Functions (weights and bias)
def init_weight(shape, st_dev):
weight = tf.Variable(tf.random_normal(shape, stddev=st_dev))
return weight
def init_bias(shape, st_dev):
bias = tf.Variable(tf.random_normal(shape, stddev=st_dev))
return bias
# Create Placeholders
x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
# Create a fully connected layer:
def fully_connected(input_layer, weights, biases):
layer = tf.add(tf.matmul(input_layer, weights), biases)
return tf.nn.relu(layer)
# ——-Create the first layer (50 hidden nodes)——–
weight_1 = init_weight(shape=[7, 25], st_dev=10.0)
bias_1 = init_bias(shape=[25], st_dev=10.0)
layer_1 = fully_connected(x_data, weight_1, bias_1)
# ——-Create second layer (25 hidden nodes)——–
weight_2 = init_weight(shape=[25, 10], st_dev=10.0)
bias_2 = init_bias(shape=[10], st_dev=10.0)
layer_2 = fully_connected(layer_1, weight_2, bias_2)
# ——-Create third layer (5 hidden nodes)——–
weight_3 = init_weight(shape=[10, 3], st_dev=10.0)
bias_3 = init_bias(shape=[3], st_dev=10.0)
layer_3 = fully_connected(layer_2, weight_3, bias_3)
# ——-Create output layer (1 output value)——–
weight_4 = init_weight(shape=[3, 1], st_dev=10.0)
bias_4 = init_bias(shape=[1], st_dev=10.0)
final_output = fully_connected(layer_3, weight_4, bias_4)
# Declare loss function (L1)
loss = tf.reduce_mean(tf.abs(y_target – final_output))
# Declare optimizer
my_opt = tf.train.AdamOptimizer(0.05)
train_step = my_opt.minimize(loss)
# Initialize Variables
init = tf.global_variables_initializer()
sess.run(init)
# Training loop
loss_vec = []
test_loss = []
for i in range(200):
rand_index = np.random.choice(len(x_vals_train), size=batch_size)
rand_x = x_vals_train[rand_index]
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)
test_temp_loss = sess.run(loss, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})
test_loss.append(test_temp_loss)
if (i+1) % 25 == 0:
print(‘Generation: ‘ + str(i+1) + ‘. Loss = ‘ + str(temp_loss))
# Plot loss (MSE) over time
plt.plot(loss_vec, ‘k-‘, label=’Train Loss’)
plt.plot(test_loss, ‘r–‘, label=’Test Loss’)
plt.title(‘Loss (MSE) per Generation’)
plt.legend(loc=’upper right’)
plt.xlabel(‘Generation’)
plt.ylabel(‘Loss’)
plt.show()
# Model Accuracy
actuals = np.array([x[0] for x in birth_data])
test_actuals = actuals[test_indices]
train_actuals = actuals[train_indices]
test_preds = [x[0] for x in sess.run(final_output, feed_dict={x_data: x_vals_test})]
train_preds = [x[0] for x in sess.run(final_output, feed_dict={x_data: x_vals_train})]
test_preds = np.array([0.0 if x < 2500.0 else 1.0 for x in test_preds])
train_preds = np.array([0.0 if x < 2500.0 else 1.0 for x in train_preds])
# Print out accuracies
test_acc = np.mean([x == y for x, y in zip(test_preds, test_actuals)])
train_acc = np.mean([x == y for x, y in zip(train_preds, train_actuals)])
print(‘On predicting the category of low birthweight from regression output (<2500g):’)
print(‘Test Accuracy: {}’.format(test_acc))
print(‘Train Accuracy: {}’.format(train_acc))
# Evaluate new points on the model
# Need vectors of ‘AGE’, ‘LWT’, ‘RACE’, ‘SMOKE’, ‘PTL’, ‘HT’, ‘UI’
new_data = np.array([[35, 185, 1., 0., 0., 0., 1.],
[18, 160, 0., 1., 0., 0., 1.]])
# new_data_scaled = np.nan_to_num(normalize_cols(new_data, train_max, train_min))
new_data_scaled, _, _ = np.nan_to_num(normalize_cols(new_data, train_min, train_max))
print(‘new_data_scaled’, new_data_scaled)
new_logits = [x[0] for x in sess.run(final_output, feed_dict={x_data: new_data_scaled})]
new_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in new_logits])
print(‘New Data Predictions: {}’.format(new_preds))