单源最短路问题 Bellman-Ford 代码(C)
本文地址: http://blog.csdn.net/caroline_wendy
单源最短路: 固定一个起点, 求它到其他所有点的最短路的问题.
Bellman-Ford: 设当前到顶点i的最短路长度为d[i], 并设初值d[s]=0, d[i]=INF,
再不断使用递推关系式d[e.to] = d[e.from] + e.cost更新d的值.
时间复杂度: O(V*E)
代码:
/*
* CppPrimer.cpp
*
* Created on: 2013.11.12
* Author: Caroline
*/
/*eclipse cdt*/
#include <stdio.h>
#include <limits.h>
#include <vector>
using namespace std;
class Program {
static const int MAX_V = 100;
static const int MAX_E = 100;
const int INF = INT_MAX>>2;
struct edge {int from, to, cost; };
edge es[MAX_E] = {
{0,1,2}, {0,2,5},
{1,0,2}, {1,2,4}, {1,3,6}, {1,4,10},
{2,0,5}, {2,1,4}, {2,3,2},
{3,2,2}, {3,1,6}, {3,5,1},
{4,1,10}, {4,5,3}, {4,6,5},
{5,3,1}, {5,4,3}, {5,6,9},
{6,4,5}, {6,5,9}
};
int V = 7, E = 20;
public:
int d[MAX_V];
void shortest_path(int s) {
for (int i=0; i<V; ++i) d[i] = INF;
d[s] = 0;
while (true) {
bool update = false;
for (int i=0; i<E; i++) {
edge e = es[i];
if (d[e.from] != INF && d[e.to] > d[e.from] + e.cost) {
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if (!update) break;
}
}
};
int main (void)
{
Program iP;
iP.shortest_path(0);
for (int i=0; i<7; i++) {
printf("%d = %d\n", i, iP.d[i]);
}
return 0;
}
输出:
0 = 0
1 = 2
2 = 5
3 = 7
4 = 11
5 = 8
6 = 16