参考博客http://www.cnblogs.com/skywang12345/p/3711514.html
http://blog.csdn.net/linux_ever/article/details/51314082
http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html
以邻接矩阵创建图,实现算法
图类接口:
class MatrixUDG {
#define MAX 100
#define INF (~(0x1<<31)) // 无穷大(即0X7FFFFFFF)
private:
char mVexs[MAX]; // 顶点集合
int mVexNum; // 顶点数
int mEdgNum; // 边数
int mMatrix[MAX][MAX]; // 邻接矩阵
public:
// 创建图(自己输入数据)
MatrixUDG();
// 创建图(用已提供的矩阵)
//MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
MatrixUDG(char vexs[], int vlen, int matrix[][9]);
~MatrixUDG();
// 深度优先搜索遍历图
void DFS();
// 广度优先搜索(类似于树的层次遍历)
void BFS();
// prim最小生成树(从start开始生成最小生成树)
void prim(int start);
// 克鲁斯卡尔(Kruskal)最小生成树
void kruskal();
// Dijkstra最短路径
void dijkstra(int vs, int vexs[], int dist[]);
// 打印矩阵队列图
void print();
private:
// 读取一个输入字符
char readChar();
// 返回ch在mMatrix矩阵中的位置
int getPosition(char ch);
// 返回顶点v的第一个邻接顶点的索引,失败则返回-1
int firstVertex(int v);
// 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
int nextVertex(int v, int w);
// 深度优先搜索遍历图的递归实现
void DFS(int i, int *visited);
// 获取图中的边
EData* getEdges();
// 对边按照权值大小进行排序(由小到大)
void sortEdges(EData* edges, int elen);
// 获取i的终点
int getEnd(int vends[], int i);
};
迪杰斯特拉算法
/*
* Dijkstra最短路径。
* 即,统计图中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void MatrixUDG::dijkstra(int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
// 初始化
for (i = 0; i < mVexNum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = mMatrix[vs][i]; // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
}
// 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0;
// 遍历mVexNum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < mVexNum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < mVexNum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1;
// 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < mVexNum; j++)
{
tmp = (mMatrix[k][j]==INF ? INF : (min + mMatrix[k][j]));
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}
// 打印dijkstra最短路径的结果
cout << "dijkstra(" << mVexs[vs] << "): " << endl;
for (i = 0; i < mVexNum; i++)
cout << " shortest(" << mVexs[vs] << ", " << mVexs[i] << ")=" << dist[i] << endl;
}