题目描述
输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)
解题思路
我的弯路
分别获取A和B的前序遍历数组和中序遍历数组——> 比较B的前序遍历数组是否按序在A的前序遍历数组中;比较B的中序遍历数组是否按序在A的中序遍历数组中;
正确思路
遍历二叉树A,定位B的根节点在A中的可能位置——> 定位后,验证B是不是A当前位置的子结构。
Python代码
class Solution:
# 给定两个二叉树(的根节点)A、B,判断B 是不是A 的二叉树
def HasSubtree(self, pRoot1, pRoot2):
if pRoot1 == None or pRoot2 == None:
return False
result = False
if pRoot1.val == pRoot2.val:
result = self.isSubtree(pRoot1, pRoot2)
if result == False:
result = self.HasSubtree(pRoot1.left, pRoot2) | self.HasSubtree(pRoot1.right, pRoot2)
return result
def isSubtree(self, root1, root2):
if root2 == None:
return True
if root1 == None:
return False
if root1.val == root2.val:
return self.isSubtree(root1.left, root2.left) & self.isSubtree(root1.right, root2.right)
return False
包含测试数据完整Python代码如下:
class Solution:
# 给定两个二叉树(的根节点)A、B,判断B 是不是A 的二叉树
def HasSubtree(self, pRoot1, pRoot2):
if pRoot1 == None or pRoot2 == None:
return False
result = False
if pRoot1.val == pRoot2.val:
result = self.isSubtree(pRoot1, pRoot2)
if result == False:
result = self.HasSubtree(pRoot1.left, pRoot2) | self.HasSubtree(pRoot1.right, pRoot2)
return result
def isSubtree(self, root1, root2):
if root2 == None:
return True
if root1 == None:
return False
if root1.val == root2.val:
return self.isSubtree(root1.left, root2.left) & self.isSubtree(root1.right, root2.right)
return False
# 给定二叉树的前序遍历和中序遍历,获得该二叉树
def getBSTwithPreTin(self, pre, tin):
if len(pre)==0 | len(tin)==0:
return None
root = treeNode(pre[0])
for order,item in enumerate(tin):
if root .val == item:
root.left = self.getBSTwithPreTin(pre[1:order+1], tin[:order])
root.right = self.getBSTwithPreTin(pre[order+1:], tin[order+1:])
return root
class treeNode:
def __init__(self, x):
self.left = None
self.right = None
self.val = x
if __name__ == '__main__':
solution = Solution()
preorder_seq = [1, 2, 4, 7, 3, 5, 6, 8]
middleorder_seq = [4, 7, 2, 1, 5, 3, 8, 6]
treeRoot1 = solution.getBSTwithPreTin(preorder_seq, middleorder_seq)
preorder_seq = [1, 2, 3]
middleorder_seq = [2, 1, 3]
treeRoot2 = solution.getBSTwithPreTin(preorder_seq, middleorder_seq)
print(solution.HasSubtree(treeRoot1, treeRoot2))