HDU 1814 Peaceful Commission(2-SAT)

Peaceful Commission

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 802    Accepted Submission(s): 158

Problem Description The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

The Commission has to fulfill the following conditions:

1.Each party has exactly one representative in the Commission,

2.If two deputies do not like each other, they cannot both belong to the Commission.

Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

Task

Write a program, which:

1.reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms,

2.decides whether it is possible to establish the Commission, and if so, proposes the list of members,

3.writes the result in the text file SPO.OUT.  

 

Input In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other.

There are multiple test cases. Process to end of file.  

 

Output The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write mininum number sequence.  

 

Sample Input 3 2 1 3 2 4  

 

Sample Output 1 4 5  

 

Source
POI 2001  

 

Recommend 威士忌        
2-SAT的题目;

和平委员会

根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立。 不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍。

此委员会必须满足下列条件:

  • 每个党派都在委员会中恰有1个代表,
  • 如果2个代表彼此厌恶,则他们不能都属于委员会。

每个党在议会中有2个代表。代表从1编号到2n。 编号为2i-1和2i的代表属于第I个党派。

任务

写一程序:

  • 从文本文件读入党派的数量和关系不友好的代表对,
  • 计算决定建立和平委员会是否可能,若行,则列出委员会的成员表,
  • 结果写入文本文件。

输入

在文本文件的第一个行有2非负整数n和m。 他们各自表示:党派的数量n,1 < =n < =8000和不友好的代表对m,0 <=m <=20000。 在下面m行的每行为一对整数a,b,1<=a <b<=2n,中间用单个空格隔开。 它们表示代表a,b互相厌恶。

输出

如果委员会不能创立,文本文件中应该包括单词NIE。若能够成立,文本文件SPO.OUT中应该包括n个从区间1到2n选出的整数,按升序写出,每行一个,这些数字为委员会中代表的编号。如果委员会能以多种方法形成,程序可以只写他们的某一个。

样品输入

3 2
1 3
2 4

样品输出

1
4
5

 
这道HDU上的没有Special Judge的,要输出最小字典序的节。写起来比较麻烦,作为模板了。

/*
HDU 1814
求出字典序最小的解
C++ 2652ms 2316K

*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<iostream>
using namespace std;
const int MAXN=16010;
const int MAXM=100000;
struct Node
{
    int a,b,pre,next;
}E[MAXM],E2[MAXM];
int _n,n,m;
int V[MAXN],ST[MAXN][2],Q[MAXN],Q2[MAXN],vst[MAXN];
bool res_ex;
void init_d()
{
    for(int i=0;i<n;i++)
      E[i].a=E[i].pre=E[i].next=E2[i].a=E2[i].pre=E2[i].next=i;
    m=n;
}
void add_edge(int a,int b)
{
    E[m].a=a;E[m].b=b;E[m].pre=E[a].pre;E[m].next=a;E[a].pre=m;E[E[m].pre].next=m;
    E2[m].a=b;E2[m].b=a;E2[m].pre=E2[b].pre;E2[m].next=b;E2[b].pre=m;E2[E2[m].pre].next=m;
    m++;
}
void solve()
{//1
    for(int i=0;i<n;i++)
    {
        V[i]=0;
        vst[i]=0;
    }
    res_ex=1;
    int i,i1,i2,j,k,front,rear,front2,rear2;
    int len;
    bool ff;
    for(int _i=0;_i<_n;_i++)
    {//2
        if(V[_i<<1]==1||V[(_i<<1)+1]==1)continue;//找一对未确定的点
        i=_i<<1;len=0;
        if(!V[i])
        {//3
            ST[len][0]=i;
            ST[len++][1]=1;
            if(!V[i^1])
            {
                ST[len][0]=i^1;
                ST[len++][1]=2;
            }
            Q[front=rear=0]=i;
            vst[i]=i1=n+i;
            Q2[front2=rear2=0]=i^1;
            vst[i^1]=i2=(n<<1)+i;
            ff=1;
            for(;front<=rear;front++)
            {//4
                j=Q[front];
                for(int p=E[j].next;p!=j;p=E[p].next)
                {//5
                    k=E[p].b;
                    if(V[k]==2||vst[k]==i2||V[k^1]==1||vst[k^1]==i1)
                    {ff=0;break;}
                    if(vst[k]!=i1)
                    {//6
                        Q[++rear]=k;vst[k]=i1;
                        if(!V[k])
                        {
                            ST[len][0]=k;
                            ST[len++][1]=1;
                        }
                    }//6
                    if(vst[k^1]!=i2)
                    {//6
                        Q2[++rear2]=k^1;vst[k^1]=i2;
                        if(!V[k])
                        {
                            ST[len][0]=k^1;
                            ST[len++][1]=2;
                        }
                    }//6
                }//5
                if(!ff)break;
            }//4
            if(ff)
            {//4
                for(;front2<=rear2;front2++)
                {//5
                    j=Q2[front2];
                    for(int p=E2[j].next;p!=j;p=E2[p].next)
                    {//6
                        k=E2[p].b;
                        if(V[k]==1||vst[k]==i1)
                        {ff=0;break;}
                        if(vst[k]!=i2)
                        {
                            vst[k]=i2;Q2[++rear]=k;
                            if(!V[k])
                            {
                                ST[len][0]=k;
                                ST[len++][1]=2;
                            }
                        }
                    }//6
                    if(!ff)break;
                }//5
                if(ff)
                {
                    for(int j=0;j<len;j++)V[ST[j][0]]=ST[j][1];
                    continue;
                }
            }//4
        }//3
        i=(_i<<1)+1;len=0;

//********************************************
//下面这段和上面完全一样的,可以复制。但是要保证上面写对
//********************************************
        if(!V[i])
        {//3
            ST[len][0]=i;
            ST[len++][1]=1;
            if(!V[i^1])
            {
                ST[len][0]=i^1;
                ST[len++][1]=2;
            }
            Q[front=rear=0]=i;
            vst[i]=i1=n+i;
            Q2[front2=rear2=0]=i^1;
            vst[i^1]=i2=(n<<1)+i;
            ff=1;
            for(;front<=rear;front++)
            {//4
                j=Q[front];
                for(int p=E[j].next;p!=j;p=E[p].next)
                {//5
                    k=E[p].b;
                    if(V[k]==2||vst[k]==i2||V[k^1]==1||vst[k^1]==i1)
                    {ff=0;break;}
                    if(vst[k]!=i1)
                    {//6
                        Q[++rear]=k;vst[k]=i1;
                        if(!V[k])
                        {
                            ST[len][0]=k;
                            ST[len++][1]=1;
                        }
                    }//6
                    if(vst[k^1]!=i2)
                    {//6
                        Q2[++rear2]=k^1;vst[k^1]=i2;
                        if(!V[k])
                        {
                            ST[len][0]=k^1;
                            ST[len++][1]=2;
                        }
                    }//6
                }//5
                if(!ff)break;
            }//4
            if(ff)
            {//4
                for(;front2<=rear2;front2++)
                {//5
                    j=Q2[front2];
                    for(int p=E2[j].next;p!=j;p=E2[p].next)
                    {//6
                        k=E2[p].b;
                        if(V[k]==1||vst[k]==i1)
                        {ff=0;break;}
                        if(vst[k]!=i2)
                        {
                            vst[k]=i2;Q2[++rear]=k;
                            if(!V[k])
                            {
                                ST[len][0]=k;
                                ST[len++][1]=2;
                            }
                        }
                    }//6
                    if(!ff)break;
                }//5
                if(ff)
                {
                    for(int j=0;j<len;j++)V[ST[j][0]]=ST[j][1];
                    continue;
                }
            }//4
        }//3
//**************************************************************
        if(V[_i<<1]+V[(_i<<1)+1]!=3){res_ex=0;break;}
    }//2
}//1
//点的编号必须从0开始,2*i和2*i+1是一对sat
int main()
{
    int M;
    int x,y;
    while(scanf("%d%d",&_n,&M)!=EOF)
    {
        n=_n<<1;
        init_d();
        while(M--)
        {
            scanf("%d%d",&x,&y);
            x--;
            y--;
            if(x!=(y^1))
            {
                add_edge(x,y^1);
                add_edge(y,x^1);
            }
        }
        solve();
        if(res_ex)
        {
            for(int i=0;i<n;i++)//V为0为不确定,1为确定选择,2为确定不选择
            if(V[i]==1)printf("%d\n",i+1);
        }
        else printf("NIE\n");
    }
    return 0;
}

 

 

 

下面写了一个不是字典序的。随便输出的一组。在另外的OJ上AC了的。

http://acm.hit.edu.cn/hoj/problem/view?id=1917

/*
HDU 1814
任意输出一组可行解。
在HDU上不能AC,HDU 上要求字典序最小的解
*/
//2-SAT问题
//求出所有强连通分量,如果有矛盾点同处于一个连通分量则无解
//缩点,将原图反向建立DAG图//按拓扑排序着色,找一个未着色点x,染成红色
//将与x矛盾的顶点及其子孙染为蓝色
//直到所有顶点均被染色,红色即为2-SAT的一组解
//点的编号从1开始,2*i和2*i+1是一组的
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<string.h>
using namespace std;

const int MAXN=16010;//8000*2
char color[MAXN];//染色
bool visit[MAXN];
queue<int>q1,q2;
//vector建图方法很妙
vector<vector<int> >adj; //原图    //中间一定要加空格把两个'>'隔开
vector<vector<int> >radj;//逆图
vector<vector<int> >dag;//缩点后的逆向DAG图
int n,m,cnt;

int id[MAXN],order[MAXN],ind[MAXN];//强连通分量,访问顺序,入度

void dfs(int u)
{
    visit[u]=true;
    int i,len=adj[u].size();
    for(i=0;i<len;i++)
      if(!visit[adj[u][i]])
        dfs(adj[u][i]);
    order[cnt++]=u;
}
void rdfs(int u)
{
    visit[u]=true;
    id[u]=cnt;
    int i,len=radj[u].size();
    for(i=0;i<len;i++)
      if(!visit[radj[u][i]])
        rdfs(radj[u][i]);
}
void korasaju()
{
    int i;
    memset(visit,false,sizeof(visit));
    for(cnt=0,i=1;i<=2*n;i++)
      if(!visit[i])
        dfs(i);
    memset(id,0,sizeof(id));
    memset(visit,false,sizeof(visit));
    for(cnt=0,i=2*n-1;i>=0;i--)
      if(!visit[order[i]])
      {
          cnt++;//这个一定要放前面来
          rdfs(order[i]);
      }
}
bool solvable()
{
    for(int i=1;i<=n;i++)
      if(id[2*i-1]==id[2*i])
        return false;
   return true;
}
void topsort()
{
    int i,j,len,now,p,pid;
    while(!q1.empty())
    {
        now=q1.front();
        q1.pop();
        if(color[now]!=0)continue;
        color[now]='R';
        ind[now]=-1;
        for(i=1;i<=2*n;i++)
        {
            if(id[i]==now)
            {
                p=(i%2)?i+1:i-1;
                pid=id[p];
                q2.push(pid);
                while(!q2.empty())
                {
                    pid=q2.front();
                    q2.pop();
                    if(color[pid]=='B')continue;
                    color[pid]='B';
                    len=dag[pid].size();
                    for(j=0;j<len;j++)
                        q2.push(dag[pid][j]);
                }
            }
        }
        len=dag[now].size();
        for(i=0;i<len;i++)
        {
            ind[dag[now][i]]--;
            if(ind[dag[now][i]]==0)
              q1.push(dag[now][i]);
        }
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int i,j,x,y,xx,yy,len;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        adj.assign(2*n+1,vector<int>());
        radj.assign(2*n+1,vector<int>());
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&x,&y);
            xx=(x%2)?x+1:x-1;
            yy=(y%2)?y+1:y-1;
            adj[x].push_back(yy);
            adj[y].push_back(xx);
            radj[yy].push_back(x);
            radj[xx].push_back(y);
        }
        korasaju();
        if(!solvable())printf("NIE\n");
        else
        {
            dag.assign(cnt+1,vector<int>());
            memset(ind,0,sizeof(ind));
            memset(color,0,sizeof(color));
            for(i=1;i<=2*n;i++)
            {
                len=adj[i].size();
                for(j=0;j<len;j++)
                  if(id[i]!=id[adj[i][j]])
                  {
                      dag[id[adj[i][j]]].push_back(id[i]);
                      ind[id[i]]++;
                  }
            }
            for(i=1;i<=cnt;i++)
              if(ind[i]==0)
                 q1.push(i);
            topsort();
            for(i=1;i<=n;i++)//小心别写错,是color[id[
               if(color[id[2*i-1]]=='R')printf("%d\n",2*i-1);
               else printf("%d\n",2*i);
        }

    }
}


/*
根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立。
不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍。
此委员会必须满足下列条件:

■每个党派都在委员会中恰有1个代表,
■如果2个代表彼此厌恶,则他们不能都属于委员会。
每个党在议会中有2个代表。代表从1编号到2n。 编号为2i-1和2i的代表属于第I个党派。

任务

写一程序:

■从文本文件读入党派的数量和关系不友好的代表对,
■计算决定建立和平委员会是否可能,若行,则列出委员会的成员表,
■结果写入文本文件。
输入

在文本文件的第一个行有2非负整数n和m。 他们各自表示:党派的数量n,1 < =n < =8000和不友好的代表对m,0 <=m <=20000。 在下面m行的每行为一对整数a,b,1<=a <b<=2n,中间用单个空格隔开。 它们表示代表a,b互相厌恶。

输出

如果委员会不能创立,文本文件中应该包括单词NIE。若能够成立,文本文件SPO.OUT中应该包括n个从区间1到2n选出的整数,按升序写出,每行一个,这些数字为委员会中代表的编号。如果委员会能以多种方法形成,程序可以只写他们的某一个。

样品输入

3 2
1 3
2 4样品输出

1
4
5
*/

 

    原文作者:算法小白
    原文地址: https://www.cnblogs.com/kuangbin/archive/2012/10/05/2712622.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞