Python numpy.squeeze() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def __init__(self, model_file, weights_file, mean_file): 
        if not os.path.exists(model_file) or \
           not os.path.exists(weights_file) or \
           not os.path.exists(mean_file): 
            raise ValueError('Invalid model: {}, \nweights file: {}, \nmean file: {}'
                             .format(model_file, weights_file, mean_file))

        # Init caffe with model
        self.net_ = caffe.Net(model_file, weights_file, caffe.TEST)
        self.mean_file_ = mean_file
        self.input_shape_ = self.net_.blobs['data'].data.shape    

        # Initialize mean file
        blob_meanfile = caffe.proto.caffe_pb2.BlobProto()
        data_meanfile = open(mean_file , 'rb' ).read()
        blob_meanfile.ParseFromString(data_meanfile)
        meanfile = np.squeeze(np.array(caffe.io.blobproto_to_array(blob_meanfile)))
        self.meanfile_ = meanfile.transpose((1,2,0))
        self.meanfile_image_ = None 

Example 2

def _get_mask(self, scan, slide, series):
		img, s, o, origShape = scan
		mask = np.zeros((origShape[1], origShape[2]))
		nodules = self._nodule_info[series]
		for nodule in nodules:
			iid, z, edges = nodule
			z = int((z - o[2])/s[2])
			if z == slide:
				if edges.shape[0] > 1:
					cv.fillPoly(mask, [edges], 255)
				else:
					#It's a small nodule. Make a circle of radius 3mm
					edges = np.squeeze(edges)
					center = tuple(edges)
					radius = max(3.0/s[0], 3.0/s[1])
					cv.circle(mask, center, int(radius+1), 255, -1)

		if img.shape[1] != origShape[1] or img.shape[2] != origShape[2]:
			mask = imu.resize_2d(mask, (img.shape[1], img.shape[2]))
		return mask 

Example 3

def did_succeed( output_dict, cond_dict ):
    '''
    Used in rejection sampling:
    for each row, determine if cond is satisfied
    for every cond in cond_dict

    success is hardcoded as round(label) being exactly equal
    to the integer in cond_dict
    '''

    #definition success:
    def is_win(key):
        #cond=np.squeeze(cond_dict[key])
        cond=np.squeeze(cond_dict[key])
        val=np.squeeze(output_dict[key])
        condition= np.round(val)==cond
        return condition

    scoreboard=[is_win(key) for key in cond_dict]
    #print('scoreboard', scoreboard)
    all_victories_bool=np.logical_and.reduce(scoreboard)
    return all_victories_bool.flatten() 

Example 4

def post_sub_one(inx):
    w,h = 1918,1280
    path,out,threshold = inx
    data = np.load(path).item()
    imgs,pred = data['name'], data['pred']
    #print(pred.shape)
    fo = open(out,'w')
    #masks = pred>threshold
    for name,mask in zip(imgs,np.squeeze(pred)):
        mask = imresize(mask,[h,w])
        mask = mask>threshold
        code = rle_encode(mask)
        code = [str(i) for i in code]
        code = " ".join(code)
        fo.write("%s,%s\n"%(name,code))
    fo.close()
    return 0 

Example 5

def show_one_img_mask(data):
    w,h = 1918,1280
    a = randint(0,31)
    path = "../input/test"
    data = np.load(data).item()
    name,masks = data['name'][a],data['pred']
    img = Image.open("%s/%s"%(path,name))
    #img.show()
    plt.imshow(img)
    plt.show()
    mask = np.squeeze(masks[a])
    mask = imresize(mask,[h,w]).astype(np.float32)
    print(mask.shape,mask[0])
    img = Image.fromarray(mask*256)#.resize([w,h])
    plt.imshow(img)
    plt.show() 

Example 6

def log_img(x,name,iteration=0,nrow=8):

    def log_img_final(x,name,iteration=0,nrow=8):
        vutils.save_image(
            x,
            LOGDIR+name+'_'+str(iteration)+'.png',
            nrow=nrow,
        )
        vis.images( 
            x.cpu().numpy(),
            win=str(MULTI_RUN)+'-'+name,
            opts=dict(caption=str(MULTI_RUN)+'-'+name+'_'+str(iteration)),
            nrow=nrow,
        )

    if params['REPRESENTATION']==chris_domain.VECTOR:
        x = vector2image(x)
    x = x.squeeze(1)
    if params['DOMAIN']=='2Dgrid':
        if x.size()[1]==2:
            log_img_final(x[:,0:1,:,:],name+'_b',iteration,nrow)
            log_img_final(x[:,1:2,:,:],name+'_a',iteration,nrow)
            x = torch.cat([x,x[:,0:1,:,:]],1)
    log_img_final(x,name,iteration,nrow) 

Example 7

def plot_convergence(images,name):
    '''
        evaluate domain
    '''

    dis, accept_rate = get_transition_prob_distribution(images)
    if not (np.sum(dis)==0.0):
        kl = scipy.stats.entropy(
            dis,
            qk=params['GRID_ACTION_DISTRIBUTION'],
            base=None
        )
        logger.plot(
            name+'-KL',
            np.asarray([kl])
        )
    l1 = np.squeeze(np.sum(np.abs(dis - np.asarray(params['GRID_ACTION_DISTRIBUTION']))))
    logger.plot(
        name+'-L1',
        np.asarray([l1])
    )
    logger.plot(
        name+'-AR',
        np.asarray([accept_rate])
    ) 

Example 8

def save_for_viz_val(data_dir, generated_images, image_files, image_caps,
                     image_ids, image_size, id):

	generated_images = np.squeeze(np.array(generated_images))
	for i in range(0, generated_images.shape[0]) :
		image_dir = join(data_dir, str(image_ids[i]))
		if not os.path.exists(image_dir):
			os.makedirs(image_dir)

		real_image_path = join(image_dir,
							   '{}.jpg'.format(image_ids[i]))
		if os.path.exists(image_dir):
			real_images_255 = image_processing.load_image_array(image_files[i],
										image_size, image_ids[i], mode='val')
			scipy.misc.imsave(real_image_path, real_images_255)

		caps_dir = join(image_dir, "caps.txt")
		if not os.path.exists(caps_dir):
			with open(caps_dir, "w") as text_file:
				text_file.write(image_caps[i]+"\n")

		fake_images_255 = generated_images[i]
		scipy.misc.imsave(join(image_dir, 'fake_image_{}.jpg'.format(id)),
		                  fake_images_255) 

Example 9

def save_distributed_image_batch(data_dir, generated_images, sel_i, sel_2, z_i,
                                 t_i, sel_img, sel_cap, sel_img_2, sel_cap_2,
                                 batch_size):

    generated_images = np.squeeze(generated_images)
    folder_name = str(sel_i) + '_' + str(sel_2)

    image_dir = join(data_dir, 't_interpolation', folder_name, str(z_i))
    if not os.path.exists(image_dir):
        os.makedirs(image_dir)

    meta_path = os.path.join(image_dir, "meta.txt")
    with open(meta_path, "w") as text_file:
        text_file.write(str(sel_img) + "\t" + str(sel_cap) +
                        str(sel_img_2) + "\t" + str(sel_cap_2))
    fake_image_255 = (generated_images[batch_size-1])
    scipy.misc.imsave(join(image_dir, '{}.jpg'.format(t_i)),
                      fake_image_255) 

Example 10

def _decode_lambda(self, args):
        """
        Decoding within tensorflow graph.
        In case kenlm_directory is specified, a modified version of tensorflow 
        (available at https://github.com/timediv/tensorflow-with-kenlm) 
        is needed to run that extends ctc_decode to use a kenlm decoder.
        :return: 
            Most probable decoded sequence.  Important: blank labels are returned as `-1`. 
        """
        import tensorflow as tf

        prediction_batch, prediction_lengths = args

        log_prediction_batch = tf.log(tf.transpose(prediction_batch, perm=[1, 0, 2]) + 1e-8)
        prediction_length_batch = tf.to_int32(tf.squeeze(prediction_lengths, axis=[1]))

        (decoded, log_prob) = self.ctc_get_decoded_and_log_probability_batch(log_prediction_batch,
                                                                             prediction_length_batch)

        return single([tf.sparse_to_dense(st.indices, st.dense_shape, st.values, default_value=-1) for st in decoded]) 

Example 11

def test_and_predict_batch(self, labeled_spectrogram_batch: List[LabeledSpectrogram]) -> ExpectationsVsPredictions:
        input_by_name, dummy_labels = self._inputs_for_loss_net(labeled_spectrogram_batch)

        predicted_graphemes, loss_batch = self.get_predicted_graphemes_and_loss_batch(
            [input_by_name[input.name.split(":")[0]] for input in self.loss_net.inputs] + [self.prediction_phase_flag])

        # blank labels are returned as -1 by tensorflow:
        predicted_graphemes[predicted_graphemes < 0] = self.grapheme_encoding.ctc_blank

        prediction_lengths = list(numpy.squeeze(input_by_name[Wav2Letter.InputNames.prediction_lengths], axis=1))
        losses = list(numpy.squeeze(loss_batch, axis=1))

        # merge was already done by tensorflow, so we disable it here:
        predictions = self.grapheme_encoding.decode_grapheme_batch(predicted_graphemes, prediction_lengths,
                                                                   merge_repeated=False)

        return ExpectationsVsPredictions(
            [ExpectationVsPrediction(predicted=predicted, expected=expected, loss=loss) for predicted, expected, loss in
             zip(predictions, (e.label for e in labeled_spectrogram_batch), losses)]) 

Example 12

def sample_embeddings(self, embeddings, filenames, class_id, sample_num):
        if len(embeddings.shape) == 2 or embeddings.shape[1] == 1:
            return np.squeeze(embeddings)
        else:
            batch_size, embedding_num, _ = embeddings.shape
            # Take every sample_num captions to compute the mean vector
            sampled_embeddings = []
            sampled_captions = []
            for i in range(batch_size):
                randix = np.random.choice(embedding_num,
                                          sample_num, replace=False)
                if sample_num == 1:
                    randix = int(randix)
                    captions = self.readCaptions(filenames[i],
                                                 class_id[i])
                    sampled_captions.append(captions[randix])
                    sampled_embeddings.append(embeddings[i, randix, :])
                else:
                    e_sample = embeddings[i, randix, :]
                    e_mean = np.mean(e_sample, axis=0)
                    sampled_embeddings.append(e_mean)
            sampled_embeddings_array = np.array(sampled_embeddings)
            return np.squeeze(sampled_embeddings_array), sampled_captions 

Example 13

def is_cat(self):
        
        #now = datetime.datetime.now()
        
        # take photo
        t = self.capture_image()
  
        # see if Min, Merlin or no cat in photo
        input_operation = self.graph.get_operation_by_name(self.input_layer_name);
        output_operation = self.graph.get_operation_by_name(self.output_layer_name);

        results = self.sess.run(output_operation.outputs[0], {input_operation.outputs[0]: t})
        results = np.squeeze(results)

        
        
        found = []
        for i in range(3):
            found.append((self.labels[i], results[i]))
               
        #print(datetime.datetime.now() - now)
        return found 

Example 14

def is_cat(self):
        
        now = datetime.datetime.now()
        
        # take photo
        t = self.capture_image()
  
        # see if Min, Merlin or no cat in photo
        input_operation = self.graph.get_operation_by_name(self.input_layer_name);
        output_operation = self.graph.get_operation_by_name(self.output_layer_name);

        results = self.sess.run(output_operation.outputs[0], {input_operation.outputs[0]: t})
        results = np.squeeze(results)

        
        
        found = []
        for i in range(3):
            found.append((self.labels[i], results[i]))
            
            
        print(datetime.datetime.now() - now)
        return found 

Example 15

def run_graph(self):

        # take photo
        t = self.capture_image()
  
        # see if Min, Merlin or no cat in photo
        input_operation = self.graph.get_operation_by_name(self.input_layer_name);
        output_operation = self.graph.get_operation_by_name(self.output_layer_name);

        results = self.sess.run(output_operation.outputs[0], {input_operation.outputs[0]: t})
        results = np.squeeze(results)

        top_k = results.argsort()[-3:][::-1]
  
        # print results
        #for i in top_k:
        #    print(self.labels[i], results[i])
        
        found = []
        for i in top_k:
            found.append((self.labels[i], results[i]))
        return found 

Example 16

def my_label2rgboverlay(labels, colors, image, alpha=0.2):
    """
    Generates image with segmentation labels on top

    Parameters
    ----------
    labels:  labels of one image (0, 1)
    colors:  colormap
    image:   image (0, 1, c), where c=3 (rgb)
    alpha: transparency
    """
    image_float = gray2rgb(img_as_float(rgb2gray(image) if
                                        image.shape[2] == 3 else
                                        np.squeeze(image)))
    label_image = my_label2rgb(labels, colors)
    output = image_float * alpha + label_image * (1 - alpha)
    return output 

Example 17

def do_checkpoint(prefix):
    """Callback to checkpoint the model to prefix every epoch.

    Parameters
    ----------
    prefix : str
        The file prefix to checkpoint to

    Returns
    -------
    callback : function
        The callback function that can be passed as iter_end_callback to fit.
    """
    def _callback(iter_no, sym, arg, aux):
        #if config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED:
        #    print "save model with mean/std"
        #    num_classes = len(arg['bbox_pred_bias'].asnumpy()) / 4
        #    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), (1, num_classes))
        #    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), (1, num_classes))
        #    arg['bbox_pred_weight'] = (arg['bbox_pred_weight'].T * mx.nd.array(stds)).T
        #    arg['bbox_pred_bias'] = arg['bbox_pred_bias'] * mx.nd.array(np.squeeze(stds)) + \
        #                                   mx.nd.array(np.squeeze(means))
        """The checkpoint function."""
        save_checkpoint(prefix, iter_no + 1, sym, arg, aux)
    return _callback 

Example 18

def batch_ssim(dbatch):
    im1,im2=np.split(dbatch,2)
    imgsize=im1.shape[1]*im1.shape[2]
    avg1=im1.mean((1,2),keepdims=1)
    avg2=im2.mean((1,2),keepdims=1)
    std1=im1.std((1,2),ddof=1)
    std2=im2.std((1,2),ddof=1)
    cov=((im1-avg1)*(im2-avg2)).mean((1,2))*imgsize/(imgsize-1)
    avg1=np.squeeze(avg1)
    avg2=np.squeeze(avg2)
    k1=0.01
    k2=0.03
    c1=(k1*255)**2
    c2=(k2*255)**2
    c3=c2/2
    return np.mean((2*avg1*avg2+c1)*2*(cov+c3)/(avg1**2+avg2**2+c1)/(std1**2+std2**2+c2)) 

Example 19

def dspbessel(n, kr):
    """Derivative of spherical Bessel (first kind) of order n at kr

    Parameters
    ----------
    n : array_like
       Order
    kr: array_like
       Argument

    Returns
    -------
    J' : complex float
       Derivative of spherical Bessel
    """
    return _np.squeeze((n * spbessel(n - 1, kr) - (n + 1) * spbessel(n + 1, kr)) / (2 * n + 1)) 

Example 20

def map(y_true, y_pred, rel_threshold=0):
    s = 0.
    y_true = _to_list(np.squeeze(y_true).tolist())
    y_pred = _to_list(np.squeeze(y_pred).tolist())
    c = list(zip(y_true, y_pred))
    random.shuffle(c)
    c = sorted(c, key=lambda x:x[1], reverse=True)
    ipos = 0
    for j, (g, p) in enumerate(c):
        if g > rel_threshold:
            ipos += 1.
            s += ipos / ( j + 1.)
    if ipos == 0:
        s = 0.
    else:
        s /= ipos
    return s 

Example 21

def precision(k=10):
    def top_k(y_true, y_pred, rel_threshold=0.):
        if k <= 0:
            return 0.
        s = 0.
        y_true = _to_list(np.squeeze(y_true).tolist())
        y_pred = _to_list(np.squeeze(y_pred).tolist())
        c = list(zip(y_true, y_pred))
        random.shuffle(c)
        c = sorted(c, key=lambda x:x[1], reverse=True)
        ipos = 0
        prec = 0.
        for i, (g,p) in enumerate(c):
            if i >= k:
                break
            if g > rel_threshold:
                prec += 1
        prec /=  k
        return prec
    return top_k

# compute [email protected]
# the input is all documents under a single query 

Example 22

def recall(k=10):
    def top_k(y_true, y_pred, rel_threshold=0.):
        if k <= 0:
            return 0.
        s = 0.
        y_true = _to_list(np.squeeze(y_true).tolist()) # y_true: the ground truth scores for documents under a query
        y_pred = _to_list(np.squeeze(y_pred).tolist()) # y_pred: the predicted scores for documents under a query
        pos_count = sum(i > rel_threshold for i in y_true) # total number of positive documents under this query
        c = list(zip(y_true, y_pred))
        random.shuffle(c)
        c = sorted(c, key=lambda x: x[1], reverse=True)
        ipos = 0
        recall = 0.
        for i, (g, p) in enumerate(c):
            if i >= k:
                break
            if g > rel_threshold:
                recall += 1
        recall /= pos_count
        return recall
    return top_k 

Example 23

def eval_map(y_true, y_pred, rel_threshold=0):
    s = 0.
    y_true = np.squeeze(y_true)
    y_pred = np.squeeze(y_pred)
    c = zip(y_true, y_pred)
    random.shuffle(c)
    c = sorted(c, key=lambda x:x[1], reverse=True)
    ipos = 0
    for j, (g, p) in enumerate(c):
        if g > rel_threshold:
            ipos += 1.
            s += ipos / ( j + 1.)
    if ipos == 0:
        s = 0.
    else:
        s /= ipos
    return s 

Example 24

def eval_precision(y_true, y_pred, k = 10, rel_threshold=0.):
    if k <= 0:
        return 0.
    s = 0.
    y_true = np.squeeze(y_true)
    y_pred = np.squeeze(y_pred)
    c = zip(y_true, y_pred)
    random.shuffle(c)
    c = sorted(c, key=lambda x:x[1], reverse=True)
    ipos = 0
    precision = 0.
    for i, (g,p) in enumerate(c):
        if i >= k:
            break
        if g > rel_threshold:
            precision += 1
    precision /=  k
    return precision 

Example 25

def eval_precision(y_true, y_pred, k = 10, rel_threshold=0.):
    if k <= 0:
        return 0.
    s = 0.
    y_true = np.squeeze(y_true)
    y_pred = np.squeeze(y_pred)
    c = zip(y_true, y_pred)
    random.shuffle(c)
    c = sorted(c, key=lambda x:x[1], reverse=True)
    ipos = 0
    precision = 0.
    for i, (g,p) in enumerate(c):
        if i >= k:
            break
        if g > rel_threshold:
            precision += 1
    precision /=  k
    return precision 

Example 26

def score(self, x_or_y):
        if len(x_or_y.shape) > 2:  # x shape: (1, N, M). y shape: (N, M)  todo: work with factors
            x_or_y = numpy.squeeze(x_or_y, axis=0)
        """
        Nematus is generally called on 1)Tokenized, 2)Truecased, 3)BPE data.
        So we will train KenLM on Tokenized, Truecase data.
        Therefore all we need to do is convert to a string and deBPE.
        """
        sentences = [deBPE(seqs2words(seq, self.id_to_word)) for seq in x_or_y.T]
        scores = self.model.score(sentences)
        #try:
        #    print 'remote LM sentences/scores:'
        #    for sent, score in zip(sentences, scores):
        #        print '"'+sent+'":', score
        #except Exception, e:
        #    print 'failed to print LM sentences/scores', e
        return scores 

Example 27

def calculate_residual_3D_Points( ref_points, gaze_points, eye_to_world_matrix ):

    average_distance = 0.0
    distance_variance = 0.0
    transformed_gaze_points = []

    for p in gaze_points:
        point = np.zeros(4)
        point[:3] = p
        point[3] = 1.0
        point = eye_to_world_matrix.dot(point)
        point = np.squeeze(np.asarray(point))
        transformed_gaze_points.append( point[:3] )

    for(a,b) in zip( ref_points, transformed_gaze_points):
        average_distance += np.linalg.norm(a-b)

    average_distance /= len(ref_points)

    for(a,b) in zip( ref_points, transformed_gaze_points):
        distance_variance += (np.linalg.norm(a-b) - average_distance)**2

    distance_variance /= len(ref_points)

    return average_distance, distance_variance 

Example 28

def update_per_row(self, y_i, phi_i, J, mu0, c, v, r_prev_i, u_prev_i, phi_r_i, phi_u):
        # Params:
        #   J - column indices

        nnz_i = len(J)
        residual_i = y_i - mu0 - c[J]
        prior_Phi = np.diag(np.concatenate(([phi_r_i], phi_u)))
        v_T = np.hstack((np.ones((nnz_i, 1)), v[J, :]))
        post_Phi_i = prior_Phi + \
                     np.dot(v_T.T,
                            np.tile(phi_i[:, np.newaxis], (1, 1 + self.num_factor)) * v_T)  # Weighted sum of v_j * v_j.T
        post_mean_i = np.squeeze(np.dot(phi_i * residual_i, v_T))
        C, lower = scipy.linalg.cho_factor(post_Phi_i)
        post_mean_i = scipy.linalg.cho_solve((C, lower), post_mean_i)
        # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation.
        ru_i = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_i)),
                                                                                   lower=lower)
        ru_i += post_mean_i + self.relaxation * (post_mean_i - np.concatenate(([r_prev_i], u_prev_i)))
        r_i = ru_i[0]
        u_i = ru_i[1:]

        return r_i, u_i 

Example 29

def update_per_col(self, y_j, phi_j, I, mu0, r, u, c_prev_j, v_prev_j, phi_c_j, phi_v):

        prior_Phi = np.diag(np.concatenate(([phi_c_j], phi_v)))
        nnz_j = len(I)
        residual_j = y_j - mu0 - r[I]
        u_T = np.hstack((np.ones((nnz_j, 1)), u[I, :]))
        post_Phi_j = prior_Phi + \
                     np.dot(u_T.T,
                            np.tile(phi_j[:, np.newaxis], (1, 1 + self.num_factor)) * u_T)  # Weighted sum of u_i * u_i.T
        post_mean_j = np.squeeze(np.dot(phi_j * residual_j, u_T))
        C, lower = scipy.linalg.cho_factor(post_Phi_j)
        post_mean_j = scipy.linalg.cho_solve((C, lower), post_mean_j)
        # Generate Gaussian, recycling the Cholesky factorization from the posterior mean computation.
        cv_j = math.sqrt(1 - self.relaxation ** 2) * scipy.linalg.solve_triangular(C, np.random.randn(len(post_mean_j)),
                                                                              lower=lower)
        cv_j += post_mean_j + self.relaxation * (post_mean_j - np.concatenate(([c_prev_j], v_prev_j)))
        c_j = cv_j[0]
        v_j = cv_j[1:]

        return c_j, v_j 

Example 30

def deprocess_and_save(x, img_path):
    # Remove the batch dimension
    x = np.squeeze(x)

    # Restore the mean values on each channel
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68

    # BGR --> RGB
    x = x[:, :, ::-1]

    # Clip unprintable colours
    x = np.clip(x, 0, 255).astype('uint8')

    # Save the image
    imsave(img_path, x) 

Example 31

def cleverhans_attack_wrapper(cleverhans_attack_fn, reset=True):
    def attack(a):
        session = tf.Session()
        with session.as_default():
            model = RVBCleverhansModel(a)
            adversarial_image = cleverhans_attack_fn(model, session, a)
            adversarial_image = np.squeeze(adversarial_image, axis=0)
            if reset:
                # optionally, reset to ignore other adversarials
                # found during the search
                a._reset()
            # run predictions to make sure the returned adversarial
            # is taken into account
            min_, max_ = a.bounds()
            adversarial_image = np.clip(adversarial_image, min_, max_)
            a.predictions(adversarial_image)
    return attack 

Example 32

def prepare_oae_PU3(known_transisitons):
    print("discriminate the correct transitions and the other transitions generated by OAE,",
          " filtered by the learned state discriminator",
          sep="\n")
    N = known_transisitons.shape[1] // 2
    y = generate_oae_action(known_transisitons)

    print("removing invalid successors (sd3)")
    ind = np.where(np.squeeze(combined(y[:,N:])) > 0.5)[0]
    
    y = y[ind]
    if len(known_transisitons) > 100:
        y = y[:len(known_transisitons)] # undersample
    
    print("valid:",len(known_transisitons),"mixed:",len(y),)
    print("creating binary classification labels")
    return (default_networks['PUDiscriminator'], *prepare_binary_classification_data(known_transisitons, y))

################################################################
# training parameters 

Example 33

def prepare_oae_PU4(known_transisitons):
    print("Learn from pre + action label",
          "*** INCOMPATIBLE MODEL! ***",
          sep="\n")
    N = known_transisitons.shape[1] // 2
    
    y = generate_oae_action(known_transisitons)

    ind = np.where(np.squeeze(combined(y[:,N:])) > 0.5)[0]
    
    y = y[ind]

    actions = oae.encode_action(known_transisitons, batch_size=1000).round()
    positive = np.concatenate((known_transisitons[:,:N], np.squeeze(actions)), axis=1)
    actions = oae.encode_action(y, batch_size=1000).round()
    negative = np.concatenate((y[:,:N], np.squeeze(actions)), axis=1)
    # random.shuffle(negative)
    # negative = negative[:len(positive)]
    # normalize
    return (default_networks['PUDiscriminator'], *prepare_binary_classification_data(positive, negative)) 

Example 34

def prepare_oae_PU5(known_transisitons):
    print("Learn from pre + suc + action label",
          "*** INCOMPATIBLE MODEL! ***",
          sep="\n")
    N = known_transisitons.shape[1] // 2
       
    y = generate_oae_action(known_transisitons)
    
    ind = np.where(np.squeeze(combined(y[:,N:])) > 0.5)[0]
    
    y = y[ind]

    actions = oae.encode_action(known_transisitons, batch_size=1000).round()
    positive = np.concatenate((known_transisitons, np.squeeze(actions)), axis=1)
    actions = oae.encode_action(y, batch_size=1000).round()
    negative = np.concatenate((y, np.squeeze(actions)), axis=1)
    # random.shuffle(negative)
    # negative = negative[:len(positive)]
    # normalize
    return (default_networks['PUDiscriminator'], *prepare_binary_classification_data(positive, negative)) 

Example 35

def sumlogs(x, axis=None, out=None):
    """Sum of vector where numbers are represented by their logarithms.
    
    Calculates np.log(np.sum(np.exp(x), axis=axis)) in such a fashion that it
    works even when elements have large magnitude.
    
    """
    maxx = x.max(axis=axis, keepdims=True)
    xnorm = x - maxx
    np.exp(xnorm, out=xnorm)
    out = np.sum(xnorm, axis=axis, out=out)
    if isinstance(out, np.ndarray):
        np.log(out, out=out)
    else:
        out = np.log(out)
    out += np.squeeze(maxx)
    return out 

Example 36

def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                            bottleneck_tensor):
  """Runs inference on an image to extract the 'bottleneck' summary layer.

  Args:
    sess: Current active TensorFlow Session.
    image_data: String of raw JPEG data.
    image_data_tensor: Input data layer in the graph.
    bottleneck_tensor: Layer before the final softmax.

  Returns:
    Numpy array of bottleneck values.
  """
  bottleneck_values = sess.run(
      bottleneck_tensor,
      {image_data_tensor: image_data})
  bottleneck_values = np.squeeze(bottleneck_values)
  return bottleneck_values 

Example 37

def extract_image_plane(snic, axes, ele_pos):
    """extract 2D imaging plane node IDs

    Extract a 2D matrix of the imaging plane node IDs based on the
    elevation position (mesh coordinates).

    :param snic: sorted node IDs and coordinates
    :param axes: spatial axes
    :param ele_pos: elevation position for plane of interest
    :returns: image_plane (node IDs)

    """
    import numpy as np

    ele0 = np.min(np.where(axes[0] >= ele_pos))
    image_plane = np.squeeze(snic[ele0, :, :]).astype(int)

    return image_plane 

Example 38

def test_basic(self):
        from numpy.random import rand

        a = rand(20, 10, 10, 1, 1)
        b = rand(20, 1, 10, 1, 20)
        c = rand(1, 1, 20, 10)
        assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
        assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
        assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))

        # Squeezing to 0-dim should still give an ndarray
        a = [[[1.5]]]
        res = np.squeeze(a)
        assert_equal(res, 1.5)
        assert_equal(res.ndim, 0)
        assert_equal(type(res), np.ndarray) 

Example 39

def k_nearest_approx(self, vec, k):
        """Get the k nearest neighbors of a vector (in terms of cosine similarity).

        :param (np.array) vec: query vector
        :param (int) k: number of top neighbors to return

        :return (list[tuple[str, float]]): a list of (word, cosine similarity) pairs, in descending order
        """
        if not hasattr(self, 'lshf'):
            self.lshf = self._init_lsh_forest()

        # TODO(kelvin): make this inner product score, to be consistent with k_nearest
        distances, neighbors = self.lshf.kneighbors(vec, n_neighbors=k, return_distance=True)
        scores = np.subtract(1, distances)
        nbr_score_pairs = self.score_map(np.squeeze(neighbors), np.squeeze(scores))

        return sorted(nbr_score_pairs.items(), key=lambda x: x[1], reverse=True) 

Example 40

def k_nearest_approx(self, vec, k):
        """Get the k nearest neighbors of a vector (in terms of cosine similarity).

        :param (np.array) vec: query vector
        :param (int) k: number of top neighbors to return

        :return (list[tuple[str, float]]): a list of (word, cosine similarity) pairs, in descending order
        """
        if not hasattr(self, 'lshf'):
            self.lshf = self._init_lsh_forest()

        # TODO(kelvin): make this inner product score, to be consistent with k_nearest
        distances, neighbors = self.lshf.kneighbors(vec, n_neighbors=k, return_distance=True)
        scores = np.subtract(1, distances)
        nbr_score_pairs = self.score_map(np.squeeze(neighbors), np.squeeze(scores))

        return sorted(nbr_score_pairs.items(), key=lambda x: x[1], reverse=True) 

Example 41

def new_image(self, image, diag=False):
        if isinstance(image, str):
            self.image_file = image
            self.image = np.array(PIL.Image.open(image))
        else:
            self.image_file = None
            self.image = image
        # Get the image into the right format.
        if self.image.dtype != np.uint8:
            raise TypeError('Image %s dtype is not unsigned 8 bit integer, image.dtype is %s.'%(
                    '"%s"'%self.image_file if self.image_file is not None else 'argument',
                    self.image.dtype))
        self.image = np.squeeze(self.image)
        if len(self.image.shape) == 2:
            self.image = np.dstack([self.image] * 3)

        self.preprocess_edges()
        self.randomize_view()

        if diag:
            plt.figure('Image')
            plt.title('Image')
            plt.imshow(self.image, interpolation='nearest')
            plt.show() 

Example 42

def plot(self, image, filename, save_sample):
        """ Plot an image."""
        image = np.minimum(image, 1)
        image = np.maximum(image, -1)
        image = np.squeeze(image)
        # Scale to 0..255.
        imin, imax = image.min(), image.max()
        image = (image - imin) * 255. / (imax - imin) + .5
        image = image.astype(np.uint8)
        if save_sample:
            try:
                Image.fromarray(image).save(filename)
            except Exception as e:
                print("Warning: could not sample to ", filename, ".  Please check permissions and make sure the path exists")
                print(e)
        GlobalViewer.update(image) 

Example 43

def grid_vis(X, nh, nw): #[buggy]
    if X.shape[0] == 1:
        return X[0]

    # nc = 3
    if X.ndim == 3:
        X = X[..., np.newaxis]
    if X.shape[-1] == 1:
        X = np.tile(X, [1,1,1,3])

    h, w = X[0].shape[:2]

    if X.dtype == np.uint8:
        img = np.ones((h * nh, w * nw, 3), np.uint8) * 255
    else:
        img = np.ones((h * nh, w * nw, 3), X.dtype)

    for n, x in enumerate(X):
        j = n // nw
        i = n % nw
        img[j * h:j * h + h, i * w:i * w + w, :] = x
    img = np.squeeze(img)
    return img 

Example 44

def sim_getCorrelation(We,words,f, weight4ind, scoring_function, params):
    f = open(f,'r')
    lines = f.readlines()
    golds = []
    seq1 = []
    seq2 = []
    for i in lines:
        i = i.split("\t")
        p1 = i[0]; p2 = i[1]; score = float(i[2])
        X1, X2 = data_io.getSeqs(p1,p2,words)
        seq1.append(X1)
        seq2.append(X2)
        golds.append(score)
    x1,m1 = data_io.prepare_data(seq1)
    x2,m2 = data_io.prepare_data(seq2)
    m1 = data_io.seq2weight(x1, m1, weight4ind)
    m2 = data_io.seq2weight(x2, m2, weight4ind)
    scores = scoring_function(We,x1,x2,m1,m2, params)
    preds = np.squeeze(scores)
    return pearsonr(preds,golds)[0], spearmanr(preds,golds)[0] 

Example 45

def getCorrelation(model,words,f, params=[]):
    f = open(f,'r')
    lines = f.readlines()
    preds = []
    golds = []
    seq1 = []
    seq2 = []
    for i in lines:
        i = i.split("\t")
        p1 = i[0]; p2 = i[1]; score = float(i[2])
        X1, X2 = data_io.getSeqs(p1,p2,words)
        seq1.append(X1)
        seq2.append(X2)
        golds.append(score)
    x1,m1 = data_io.prepare_data(seq1)
    x2,m2 = data_io.prepare_data(seq2)
    if params and params.weightfile:
        m1 = data_io.seq2weight(x1, m1, params.weight4ind)
        m2 = data_io.seq2weight(x2, m2, params.weight4ind)
    scores = model.scoring_function(x1,x2,m1,m2)
    preds = np.squeeze(scores)
    return pearsonr(preds,golds)[0], spearmanr(preds,golds)[0] 

Example 46

def save_np_image(image, output_file, save_format='jpeg'):
  """Saves an image to disk.

  Args:
    image: 3-D numpy array of shape [image_size, image_size, 3] and dtype
        float32, with values in [0, 1].
    output_file: str, output file.
    save_format: format for saving image (eg. jpeg).
  """
  image = np.uint8(image * 255.0)
  buf = io.BytesIO()
  scipy.misc.imsave(buf, np.squeeze(image, 0), format=save_format)
  buf.seek(0)
  f = tf.gfile.GFile(output_file, 'w')
  f.write(buf.getvalue())
  f.close() 

Example 47

def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                            bottleneck_tensor):
  """Runs inference on an image to extract the 'bottleneck' summary layer.

  Args:
    sess: Current active TensorFlow Session.
    image_data: String of raw JPEG data.
    image_data_tensor: Input data layer in the graph.
    bottleneck_tensor: Layer before the final softmax.

  Returns:
    Numpy array of bottleneck values.
  """
  bottleneck_values = sess.run(
      bottleneck_tensor,
      {image_data_tensor: image_data})
  bottleneck_values = np.squeeze(bottleneck_values)
  return bottleneck_values 

Example 48

def standardize(data_train, data_test):
    """
    Standardize a dataset to have zero mean and unit standard deviation.

    :param data_train: 2-D Numpy array. Training data.
    :param data_test: 2-D Numpy array. Test data.

    :return: (train_set, test_set, mean, std), The standardized dataset and
        their mean and standard deviation before processing.
    """
    std = np.std(data_train, 0, keepdims=True)
    std[std == 0] = 1
    mean = np.mean(data_train, 0, keepdims=True)
    data_train_standardized = (data_train - mean) / std
    data_test_standardized = (data_test - mean) / std
    mean, std = np.squeeze(mean, 0), np.squeeze(std, 0)
    return data_train_standardized, data_test_standardized, mean, std 

Example 49

def effective_sample_size(samples, burn_in=100):
    """
    Compute the effective sample size of a chain of vector samples, using the
    algorithm in Stan. Users should flatten their samples as vectors if not so.

    :param samples: A 2-D numpy array of shape ``(M, D)``, where ``M`` is the
        number of samples, and ``D`` is the number of dimensions of each
        sample.
    :param burn_in: The number of discarded samples.

    :return: A 1-D numpy array. The effective sample size.
    """
    current_ess = np.inf
    esses = []
    for d in range(samples.shape[1]):
        ess = effective_sample_size_1d(np.squeeze(samples[burn_in:, d]))
        assert ess >= 0
        if ess > 0:
            current_ess = min(current_ess, ess)

        esses.append(ess)
    return current_ess 

Example 50

def tru_plot9(X,labels,t,plot_suffix,clust_names,clust_color, plot_loc):
    """
    From clustering_on_transcript_compatibility_counts, see github for MIT license
    """
    unique_labels = np.unique(labels)
    plt.figure(figsize=(15,10))
    for i in unique_labels:
        ind = np.squeeze(labels == i)
        plt.scatter(X[ind,0],X[ind,1],c=clust_color[i],s=36,edgecolors='gray',
                    lw = 0.5, label=clust_names[i])        
    plt.legend(loc='upper right',bbox_to_anchor=(1.1, 1))
    plt.legend(loc='upper right',bbox_to_anchor=(1.19, 1.01))
    plt.title(t)
    plt.xlim([-20,20])
    plt.ylim([-20,20])
    plt.axis('off')
    plt.savefig(plot_loc+ 't-SNE_plot_tru_plot9_'+ plot_suffix +'.pdf', bbox_inches='tight')

    # Plot function with Zeisel's colors corresponding to labels 
点赞