Python numpy.True_() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def masked_matrix(matrix, all_zero=False):
    """
    Returns masked version of HicMatrix. By default, all entries in zero-count
    rows and columns are masked.

    :param matrix: A numpy 2D matrix
    :param all_zero: Mask ALL zero-count entries
    :returns: MaskedArray with zero entries masked
    """
    if all_zero:
        return np.ma.MaskedArray(matrix, mask=np.isclose(matrix, 0.))
    col_zero = np.isclose(np.sum(matrix, axis=0), 0.)
    row_zero = np.isclose(np.sum(matrix, axis=1), 0.)
    mask = np.zeros(matrix.shape, dtype=np.bool_)
    mask[:, col_zero] = np.True_
    mask[row_zero, :] = np.True_
    return np.ma.MaskedArray(matrix, mask=mask) 

Example 2

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 3

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 4

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 5

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 6

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 7

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 8

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 9

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 10

def _recalc_display_image_minmax(self):
        finite_mask = np.isfinite(self.display_image)
        if finite_mask.max() is np.True_:
            self._display_image_min = self.display_image[finite_mask].min()
            self._display_image_max = self.display_image[finite_mask].max()
        else:
            self._display_image_min = 0.
            self._display_image_max = 0. 

Example 11

def _recalc_display_image_minmax(self):
        finite_mask = np.isfinite(self.display_image)
        if finite_mask.max() is np.True_:
            self._display_image_min = self.display_image[finite_mask].min()
            self._display_image_max = self.display_image[finite_mask].max()
        else:
            self._display_image_min = 0.
            self._display_image_max = 0. 

Example 12

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 13

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 14

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 15

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 16

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 17

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 18

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 19

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 20

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 21

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 22

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 23

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 24

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 25

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 26

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 27

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 28

def test_logical(self):
        f = np.False_
        t = np.True_
        s = "xyz"
        self.assertTrue((t and s) is s)
        self.assertTrue((f and s) is f) 

Example 29

def test_bitwise_or(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t | t) is t)
        self.assertTrue((f | t) is t)
        self.assertTrue((t | f) is t)
        self.assertTrue((f | f) is f) 

Example 30

def test_bitwise_and(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t & t) is t)
        self.assertTrue((f & t) is f)
        self.assertTrue((t & f) is f)
        self.assertTrue((f & f) is f) 

Example 31

def test_bitwise_xor(self):
        f = np.False_
        t = np.True_
        self.assertTrue((t ^ t) is f)
        self.assertTrue((f ^ t) is t)
        self.assertTrue((t ^ f) is t)
        self.assertTrue((f ^ f) is f) 

Example 32

def aperture_phot(im, x, y, star_radius, sky_inner_radius, sky_outer_radius, 
                  return_distances=False):
    """
    im - 2-d numpy array
    x,y - coordinates of center of star
    star_radius - radius of photometry circle
    sky_inner_radius, sky_outer_radius - defines annulus for determining sky
            (if sky_inner_radius > sky_outer_radius, aperture_phot flips them)
    ----
    Note that this is a very quick-and-dirty aperture photometry routine.
    No error checking.
    No partial pixels.
    Many ways this could fail and/or give misleading results.
    Not to be used within 12 hours of eating food.
    Use only immediately after a large meal.
    ----
    returns dictionary with:
    flux - sky-subtracted flux inside star_radius
    sky_per_pixel - sky counts per pixel determined from sky annulus
    sky_per_pixel_err - estimated 1-sigma uncertainty in sky_per_pixel
    sky_err - estimated 1-sigma uncertainty in sky subtraction from flux
    n_star_pix - number of pixels in star_radius
    n_sky_pix - number of pixels in sky annulus
    x - input x
    y - input y
    star_radius - input star_radius
    sky_inner_radius - input sky_inner_radius
    sky_outer_radius - input sky_outer_radius 
    """
    if np.isnan(x) or np.isnan(y):
        return {'error-msg':'One or both of x/y were NaN.', 'x':x, 'y':y, 'star_radius': star_radius,
                'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius,
                'n_star_pix':0, 'n_sky_pix':0, 'sky_per_pixel':np.nan, 'sky_per_pixel_err':np.nan,
                'flux':np.nan, 'sky_err':np.nan, 'distances':[]}
    if sky_inner_radius > sky_outer_radius:
        sky_inner_radius, sky_outer_radius = sky_outer_radius, sky_inner_radius
    output = {'x': x, 'y': y, 'star_radius': star_radius,
              'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius}
    xdist = np.outer(np.ones(im.shape[0]), np.arange(im.shape[1]) - x)
    ydist = np.outer(np.arange(im.shape[0]) - y, np.ones(im.shape[1]))
    dist = np.sqrt(xdist**2 + ydist**2)
    star_mask = dist <= star_radius
    star_pixels = im[star_mask]
    
    sky_pixels = im[(dist >= sky_inner_radius) & (dist <= sky_outer_radius)]
    output['n_star_pix'] = star_pixels.size
    output['n_sky_pix'] = sky_pixels.size
    finite_mask = np.isfinite(sky_pixels)
    if finite_mask.max() is np.True_:
        sky_per_pixel, median, stddev = sigma_clipped_stats(sky_pixels[finite_mask])
    else:
        sky_per_pixel, median, stddev = np.nan, np.nan, np.inf
    sky_per_pixel_err = stddev/np.sqrt(finite_mask.sum())
    output['sky_per_pixel'] = sky_per_pixel
    # TODO: check that are doing sky_per_pixel_err right.  In one quick test seemed high (but maybe wasn't a good test)
    output['sky_per_pixel_err'] = sky_per_pixel_err
    output['flux'] = star_pixels.sum() - sky_per_pixel*star_pixels.size
    output['sky_err'] = sky_per_pixel_err*np.sqrt(star_pixels.size)
    if return_distances:
        output['distances'] = dist
    return output 

Example 33

def aperture_phot(im, x, y, star_radius, sky_inner_radius, sky_outer_radius, 
                  return_distances=False):
    """
    im - 2-d numpy array
    x,y - coordinates of center of star
    star_radius - radius of photometry circle
    sky_inner_radius, sky_outer_radius - defines annulus for determining sky
            (if sky_inner_radius > sky_outer_radius, aperture_phot flips them)
    ----
    Note that this is a very quick-and-dirty aperture photometry routine.
    No error checking.
    No partial pixels.
    Many ways this could fail and/or give misleading results.
    Not to be used within 12 hours of eating food.
    Use only immediately after a large meal.
    ----
    returns dictionary with:
    flux - sky-subtracted flux inside star_radius
    sky_per_pixel - sky counts per pixel determined from sky annulus
    sky_per_pixel_err - estimated 1-sigma uncertainty in sky_per_pixel
    sky_err - estimated 1-sigma uncertainty in sky subtraction from flux
    n_star_pix - number of pixels in star_radius
    n_sky_pix - number of pixels in sky annulus
    x - input x
    y - input y
    star_radius - input star_radius
    sky_inner_radius - input sky_inner_radius
    sky_outer_radius - input sky_outer_radius 
    """
    if np.isnan(x) or np.isnan(y):
        return {'error-msg':'One or both of x/y were NaN.', 'x':x, 'y':y, 'star_radius': star_radius,
                'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius,
                'n_star_pix':0, 'n_sky_pix':0, 'sky_per_pixel':np.nan, 'sky_per_pixel_err':np.nan,
                'flux':np.nan, 'sky_err':np.nan, 'distances':[]}
    if sky_inner_radius > sky_outer_radius:
        sky_inner_radius, sky_outer_radius = sky_outer_radius, sky_inner_radius
    output = {'x': x, 'y': y, 'star_radius': star_radius,
              'sky_inner_radius': sky_inner_radius, 'sky_outer_radius': sky_outer_radius}
    xdist = np.outer(np.ones(im.shape[0]), np.arange(im.shape[1]) - x)
    ydist = np.outer(np.arange(im.shape[0]) - y, np.ones(im.shape[1]))
    dist = np.sqrt(xdist**2 + ydist**2)
    star_mask = dist <= star_radius
    star_pixels = im[star_mask]
    
    sky_pixels = im[(dist >= sky_inner_radius) & (dist <= sky_outer_radius)]
    output['n_star_pix'] = star_pixels.size
    output['n_sky_pix'] = sky_pixels.size
    finite_mask = np.isfinite(sky_pixels)
    if finite_mask.max() is np.True_:
        sky_per_pixel, median, stddev = sigma_clipped_stats(sky_pixels[finite_mask])
    else:
        sky_per_pixel, median, stddev = np.nan, np.nan, np.inf
    sky_per_pixel_err = stddev/np.sqrt(finite_mask.sum())
    output['sky_per_pixel'] = sky_per_pixel
    # TODO: check that are doing sky_per_pixel_err right.  In one quick test seemed high (but maybe wasn't a good test)
    output['sky_per_pixel_err'] = sky_per_pixel_err
    output['flux'] = star_pixels.sum() - sky_per_pixel*star_pixels.size
    output['sky_err'] = sky_per_pixel_err*np.sqrt(star_pixels.size)
    if return_distances:
        output['distances'] = dist
    return output 
点赞