Python numpy.get_printoptions() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def pformat(obj, indent=0, depth=3):
    if 'numpy' in sys.modules:
        import numpy as np
        print_options = np.get_printoptions()
        np.set_printoptions(precision=6, threshold=64, edgeitems=1)
    else:
        print_options = None
    out = pprint.pformat(obj, depth=depth, indent=indent)
    if print_options:
        np.set_printoptions(**print_options)
    return out


###############################################################################
# class `Logger`
############################################################################### 

Example 2

def after_run(self, run_context, run_values):
        global_episode = run_values.results['global_episode']
        if can_run_hook(run_context):
            if self._timer.should_trigger_for_episode(global_episode):
                original = np.get_printoptions()
                np.set_printoptions(suppress=True)
                elapsed_secs, _ = self._timer.update_last_triggered_episode(global_episode)
                if self._formatter:
                    logging.info(self._formatter(run_values.results))
                else:
                    stats = []
                    for tag in self._tag_order:
                        stats.append("%s = %s" % (tag, run_values.results[tag]))
                    if elapsed_secs is not None:
                        logging.info("%s (%.3f sec)", ", ".join(stats), elapsed_secs)
                    else:
                        logging.info("%s", ", ".join(stats))
                np.set_printoptions(**original) 

Example 3

def pformat(obj, indent=0, depth=3):
    if 'numpy' in sys.modules:
        import numpy as np
        print_options = np.get_printoptions()
        np.set_printoptions(precision=6, threshold=64, edgeitems=1)
    else:
        print_options = None
    out = pprint.pformat(obj, depth=depth, indent=indent)
    if print_options:
        np.set_printoptions(**print_options)
    return out


###############################################################################
# class `Logger`
############################################################################### 

Example 4

def np_printoptions(**kwargs):
    """Context manager to temporarily set numpy print options."""
    old = np.get_printoptions()
    np.set_printoptions(**kwargs)
    yield
    np.set_printoptions(**old) 

Example 5

def setUp(self):
        self.oldopts = np.get_printoptions() 

Example 6

def printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    try:
        yield
    finally:
        np.set_printoptions(**original) 

Example 7

def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = HTKFeat_read()
        for file_name in file_list:
            features, current_frame_number = io_funcs.getall(file_name)
#            io_funcs = HTK_Parm_IO()
#            io_funcs.read_htk(file_name)
#            features = io_funcs.data
#            current_frame_number = io_funcs.n_samples

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.mean_vector = mean_vector

        return  mean_vector 

Example 8

def compute_std(self, file_list, mean_vector, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = HTKFeat_read()
        for file_name in file_list:
            features, current_frame_number = io_funcs.getall(file_name)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.std_vector = std_vector

        return  std_vector 

Example 9

def printoptions(*args, **kwargs):
    original = numpy.get_printoptions()
    numpy.set_printoptions(*args, **kwargs)
    yield
    numpy.set_printoptions(**original) 

Example 10

def find_min_max_values(self, in_file_list):

        logger = logging.getLogger("acoustic_norm")

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        max_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in range(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)

            temp_min = numpy.amin(features, axis = 0)
            temp_max = numpy.amax(features, axis = 0)

            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) )
        logger.info('  min: %s' % self.min_vector)
        logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 11

def compute_mean(self, file_list):

        logger = logging.getLogger("acoustic_norm")

        mean_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features = io_funcs.load_binary_file(file_name, self.feature_dimension)
            current_frame_number = features.size // self.feature_dimension
            mean_vector += numpy.reshape(numpy.sum(features, axis=0), (1, self.feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector 

Example 12

def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in range(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)

            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)

            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 13

def compute_mean(self, file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        self.logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  mean_vector 

Example 14

def compute_std(self, file_list, mean_vector, start_index, end_index):
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        self.logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        return  std_vector 

Example 15

def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.mean_vector = mean_vector

        return  mean_vector 

Example 16

def compute_std(self, file_list, mean_vector, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')

        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))

            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number

        std_vector /= float(all_frame_number)

        std_vector = std_vector ** 0.5

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)

        self.std_vector = std_vector

        return  std_vector 

Example 17

def test_precision():
    """test various values for float_precision."""
    f = PlainTextFormatter()
    nt.assert_equal(f(pi), repr(pi))
    f.float_precision = 0
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 0)
    nt.assert_equal(f(pi), '3')
    f.float_precision = 2
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 2)
    nt.assert_equal(f(pi), '3.14')
    f.float_precision = '%g'
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 2)
    nt.assert_equal(f(pi), '3.14159')
    f.float_precision = '%e'
    nt.assert_equal(f(pi), '3.141593e+00')
    f.float_precision = ''
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 8)
    nt.assert_equal(f(pi), repr(pi)) 

Example 18

def __repr__(self):
        """
        FloatArrayParameter needs to "truncate" the array by temporarily
        overriding np.set_printoptions
        """
        opt = np.get_printoptions()
        # <Parameter:_qualifier= takes 13+len(qualifier) characters
        np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-(13+len(self.qualifier)))
        repr_ = super(FloatArrayParameter, self).__repr__()
        np.set_printoptions(**opt)
        return repr_ 

Example 19

def __str__(self):
        """
        FloatArrayParameter needs to "truncate" the array by temporarily
        overriding np.set_printoptions
        """
        opt = np.get_printoptions()
        # Value:_ takes 7 characters
        np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-7)
        str_ = super(FloatArrayParameter, self).__str__()
        np.set_printoptions(**opt)
        return str_ 

Example 20

def to_string_short(self):
        """
        see also :meth:`to_string`

        :return: a shorter abreviated string reprentation of the parameter
        """
        opt = np.get_printoptions()
        np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-len(self.uniquetwig)-2)
        str_ = super(FloatArrayParameter, self).to_string_short()
        np.set_printoptions(**opt)
        return str_ 

Example 21

def __repr__(self):
        """
        IntArrayParameter needs to "truncate" the array by temporarily
        overriding np.set_printoptions
        """
        opt = np.get_printoptions()
        # <Parameter:_qualifier= takes 13+len(qualifier) characters
        np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-(13+len(self.qualifier)))
        repr_ = super(IntArrayParameter, self).__repr__()
        np.set_printoptions(**opt)
        return repr_ 

Example 22

def __str__(self):
        """
        IntArrayParameter needs to "truncate" the array by temporarily
        overriding np.set_printoptions
        """
        opt = np.get_printoptions()
        # Value:_ takes 7 characters
        np.set_printoptions(threshold=8, edgeitems=3, linewidth=opt['linewidth']-7)
        str_ = super(IntArrayParameter, self).__str__()
        np.set_printoptions(**opt)
        return str_ 

Example 23

def setUp(self):
        self.oldopts = np.get_printoptions() 

Example 24

def printoptions(*args, **kwargs):
    original = numpy.get_printoptions()
    numpy.set_printoptions(*args, **kwargs)
    yield 
    numpy.set_printoptions(**original) 

Example 25

def find_min_max_values(self, in_file_list):

        logger = logging.getLogger("acoustic_norm")

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        max_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)
            
            temp_min = numpy.amin(features, axis = 0)
            temp_max = numpy.amax(features, axis = 0)
            
            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) )
        logger.info('  min: %s' % self.min_vector)
        logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 26

def compute_std(self, file_list, mean_vector):
        
        logger = logging.getLogger("acoustic_norm")
        
        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features = io_funcs.load_binary_file(file_name, self.feature_dimension)
            current_frame_number = features.size / self.feature_dimension
            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features - mean_matrix) ** 2, axis=0), (1, self.feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        return  std_vector 

Example 27

def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)
            
            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)
            
            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 28

def compute_std(self, file_list, mean_vector, start_index, end_index):
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        self.logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        return  std_vector 

Example 29

def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index
        
        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.mean_vector = mean_vector
        
        return  mean_vector 

Example 30

def compute_std(self, file_list, mean_vector, start_index, end_index):
    
        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.std_vector = std_vector
        
        return  std_vector 

Example 31

def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)
            
            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)
            
            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 32

def compute_mean(self, file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index
        
        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        mean_vector /= float(all_frame_number)
        
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        self.logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        return  mean_vector 

Example 33

def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index
        
        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.mean_vector = mean_vector
        
        return  mean_vector 

Example 34

def compute_std(self, file_list, mean_vector, start_index, end_index):
    
        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.std_vector = std_vector
        
        return  std_vector 

Example 35

def setUp(self):
        self.oldopts = np.get_printoptions() 

Example 36

def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index
        
        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = HTKFeat_read()
        for file_name in file_list:
            features, current_frame_number = io_funcs.getall(file_name)
#            io_funcs = HTK_Parm_IO()
#            io_funcs.read_htk(file_name)
#            features = io_funcs.data
#            current_frame_number = io_funcs.n_samples

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.mean_vector = mean_vector
        
        return  mean_vector 

Example 37

def compute_std(self, file_list, mean_vector, start_index, end_index):
    
        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = HTKFeat_read()
        for file_name in file_list:
            features, current_frame_number = io_funcs.getall(file_name)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.std_vector = std_vector
        
        return  std_vector 

Example 38

def printoptions(*args, **kwargs):
    original = numpy.get_printoptions()
    numpy.set_printoptions(*args, **kwargs)
    yield 
    numpy.set_printoptions(**original) 

Example 39

def find_min_max_values(self, in_file_list):

        logger = logging.getLogger("acoustic_norm")

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        max_value_matrix = numpy.zeros((file_number, self.feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)
            
            temp_min = numpy.amin(features, axis = 0)
            temp_max = numpy.amax(features, axis = 0)
            
            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, self.feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, self.feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('across %d files found min/max values of length %d:' % (file_number,self.feature_dimension) )
        logger.info('  min: %s' % self.min_vector)
        logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 40

def find_min_max_values(self, in_file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index

        file_number = len(in_file_list)
        min_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        max_value_matrix = numpy.zeros((file_number, local_feature_dimension))
        io_funcs = BinaryIOCollection()
        for i in xrange(file_number):
            features = io_funcs.load_binary_file(in_file_list[i], self.feature_dimension)
            
            temp_min = numpy.amin(features[:, start_index:end_index], axis = 0)
            temp_max = numpy.amax(features[:, start_index:end_index], axis = 0)
            
            min_value_matrix[i, ] = temp_min;
            max_value_matrix[i, ] = temp_max;

        self.min_vector = numpy.amin(min_value_matrix, axis = 0)
        self.max_vector = numpy.amax(max_value_matrix, axis = 0)
        self.min_vector = numpy.reshape(self.min_vector, (1, local_feature_dimension))
        self.max_vector = numpy.reshape(self.max_vector, (1, local_feature_dimension))

        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('found min/max values of length %d:' % local_feature_dimension)
        self.logger.info('  min: %s' % self.min_vector)
        self.logger.info('  max: %s' % self.max_vector)
        # restore the print options
        # numpy.set_printoptions(po) 

Example 41

def compute_mean(self, file_list, start_index, end_index):

        local_feature_dimension = end_index - start_index
        
        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        mean_vector /= float(all_frame_number)
        
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        self.logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        return  mean_vector 

Example 42

def compute_std(self, file_list, mean_vector, start_index, end_index):
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        self.logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        self.logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        return  std_vector 

Example 43

def compute_mean(self, file_list, start_index, end_index):

        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index
        
        mean_vector = numpy.zeros((1, local_feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_vector += numpy.reshape(numpy.sum(features[:, start_index:end_index], axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        mean_vector /= float(all_frame_number)

        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed mean vector of length %d :' % mean_vector.shape[1] )
        logger.info(' mean: %s' % mean_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.mean_vector = mean_vector
        
        return  mean_vector 

Example 44

def compute_std(self, file_list, mean_vector, start_index, end_index):
    
        logger = logging.getLogger('feature_normalisation')
        
        local_feature_dimension = end_index - start_index

        std_vector = numpy.zeros((1, self.feature_dimension))
        all_frame_number = 0

        io_funcs = BinaryIOCollection()
        for file_name in file_list:
            features, current_frame_number = io_funcs.load_binary_file_frame(file_name, self.feature_dimension)

            mean_matrix = numpy.tile(mean_vector, (current_frame_number, 1))
            
            std_vector += numpy.reshape(numpy.sum((features[:, start_index:end_index] - mean_matrix) ** 2, axis=0), (1, local_feature_dimension))
            all_frame_number += current_frame_number
            
        std_vector /= float(all_frame_number)
        
        std_vector = std_vector ** 0.5
        
        # setting the print options in this way seems to break subsequent printing of numpy float32 types
        # no idea what is going on - removed until this can be solved
        # po=numpy.get_printoptions()
        # numpy.set_printoptions(precision=2, threshold=20, linewidth=1000, edgeitems=4)
        logger.info('computed  std vector of length %d' % std_vector.shape[1] )
        logger.info('  std: %s' % std_vector)
        # restore the print options
        # numpy.set_printoptions(po)
        
        self.std_vector = std_vector
        
        return  std_vector 

Example 45

def _printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    yield
    np.set_printoptions(**original)


# http://code.activestate.com/recipes/577586-converts-from-decimal-to-any-base-between-2-and-26/ 

Example 46

def setUp(self):
        self.oldopts = np.get_printoptions() 

Example 47

def parse_numpy_printoption(kv_str):
    """Sets a single numpy printoption from a string of the form 'x=y'.

    See documentation on numpy.set_printoptions() for details about what values
    x and y can take. x can be any option listed there other than 'formatter'.

    Args:
        kv_str: A string of the form 'x=y', such as 'threshold=100000'

    Raises:
        argparse.ArgumentTypeError: If the string couldn't be used to set any
                nump printoption.
    """
    k_v_str = kv_str.split("=", 1)
    if len(k_v_str) != 2 or not k_v_str[0]:
        raise argparse.ArgumentTypeError("'%s' is not in the form k=v." % kv_str)
    k, v_str = k_v_str
    printoptions = np.get_printoptions()
    if k not in printoptions:
        raise argparse.ArgumentTypeError("'%s' is not a valid printoption." % k)
    v_type = type(printoptions[k])
    if v_type is type(None):
        raise argparse.ArgumentTypeError(
                "Setting '%s' from the command line is not supported." % k)
    try:
        v = (v_type(v_str) if v_type is not bool
             else flags.BooleanParser().Parse(v_str))
    except ValueError as e:
        raise argparse.ArgumentTypeError(e.message)
    np.set_printoptions(**{k: v}) 

Example 48

def test_precision():
    """test various values for float_precision."""
    f = PlainTextFormatter()
    nt.assert_equal(f(pi), repr(pi))
    f.float_precision = 0
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 0)
    nt.assert_equal(f(pi), '3')
    f.float_precision = 2
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 2)
    nt.assert_equal(f(pi), '3.14')
    f.float_precision = '%g'
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 2)
    nt.assert_equal(f(pi), '3.14159')
    f.float_precision = '%e'
    nt.assert_equal(f(pi), '3.141593e+00')
    f.float_precision = ''
    if numpy:
        po = numpy.get_printoptions()
        nt.assert_equal(po['precision'], 8)
    nt.assert_equal(f(pi), repr(pi)) 

Example 49

def fullprint(*args, **kwargs):
    "https://gist.github.com/ZGainsforth/3a306084013633c52881"
    from pprint import pprint
    import numpy
    opt = numpy.get_printoptions()
    numpy.set_printoptions(threshold='nan')
    pprint(*args, **kwargs)
    numpy.set_printoptions(**opt) 

Example 50

def printoptions(*args, **kwargs):
    """Context manager for temporarily setting NumPy print options.
    See http://stackoverflow.com/a/2891805/500098
    """
    original = np.get_printoptions()
    try:
        np.set_printoptions(*args, **kwargs)
        yield
    finally:
        np.set_printoptions(**original)



# taken from https://code.activestate.com/recipes/577504/ as recommended by
# https://docs.python.org/3.5/library/sys.html#sys.getsizeof 
点赞