The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def _get_data_dims(self, input_fname): """Briefly scan the data file for info""" # raw data formatting is nsamps by nchans + counter data = np.genfromtxt(input_fname, delimiter=',', comments='%', skip_footer=1) diff = np.abs(np.diff(data[:, 0])) diff = np.mod(diff, 254) - 1 missing_idx = np.where(diff != 0)[0] missing_samps = diff[missing_idx].astype(int) nsamps, nchan = data.shape # add the missing samples nsamps += sum(missing_samps) # remove the tracker column nchan -= 1 del data return nsamps, nchan
Example 2
def get_adjacency_matrix(out_dir, sid, expt_id): "Returns the adjacency matrix" vec_path = pjoin(out_dir, sid, '{}_graynet.csv'.format(expt_id)) edge_vec = np.genfromtxt(vec_path) matrix_size = np.int64( (1.0 + np.sqrt(1.0+8.0*len(edge_vec)))/2.0 ) edge_mat = np.zeros([matrix_size, matrix_size]) # making this symmetric as required by nilearn's plot_connectome (stupid) # upper tri; diag +1; # lower tri; diag -1 upper_tri = np.triu_indices_from(edge_mat, +1) lower_tri = np.tril_indices_from(edge_mat, -1) edge_mat[upper_tri] = edge_vec edge_mat[lower_tri] = edge_mat.T[lower_tri] return edge_mat
Example 3
def _block2df(block,obstypes,svnames,svnum): """ input: block of text corresponding to one time increment INTERVAL of RINEX file output: 2-D array of float64 data from block. Future: consider whether best to use Numpy, Pandas, or Xray. """ nobs = len(obstypes) stride=3 strio = BytesIO(block.encode()) barr = np.genfromtxt(strio, delimiter=(14,1,1)*5).reshape((svnum,-1), order='C') data = barr[:,0:nobs*stride:stride] lli = barr[:,1:nobs*stride:stride] ssi = barr[:,2:nobs*stride:stride] data = np.vstack(([data.T],[lli.T],[ssi.T])).T return data
Example 4
def _block2df(block,obstypes,svnames,svnum): """ input: block of text corresponding to one time increment INTERVAL of RINEX file output: 2-D array of float64 data from block. Future: consider whether best to use Numpy, Pandas, or Xray. """ nobs = len(obstypes) stride=3 strio = BytesIO(block.encode()) barr = np.genfromtxt(strio, delimiter=(14,1,1)*5).reshape((svnum,-1), order='C') data = barr[:,0:nobs*stride:stride] lli = barr[:,1:nobs*stride:stride] ssi = barr[:,2:nobs*stride:stride] data = np.vstack(([data.T],[lli.T],[ssi.T])).T return data
Example 5
def _block2df(block,obstypes,svnames,svnum): """ input: block of text corresponding to one time increment INTERVAL of RINEX file output: 2-D array of float64 data from block. """ nobs = len(obstypes) stride=3 strio = BytesIO(block.encode()) barr = np.genfromtxt(strio, delimiter=(14,1,1)*5).reshape((svnum,-1), order='C') data = barr[:,0:nobs*stride:stride] lli = barr[:,1:nobs*stride:stride] ssi = barr[:,2:nobs*stride:stride] data = np.vstack(([data],[lli],[ssi])).T #4D numpy array return data
Example 6
def _read_horizons_file(self): """ reads standard output from JPL Horizons into self.data_lists """ # Read in the file self._get_start_end() data = np.genfromtxt( self.file_properties['file_name'], dtype=[('date', 'S17'), ('ra_dec', 'S23'), ('distance', 'f8'), ('foo', 'S23')], delimiter=[18, 29, 18, 24], autostrip=True, skip_header=self.file_properties['start_ind'] + 1, skip_footer=(self.file_properties['line_count'] - self.file_properties['stop_ind'])) # Fix time format for (i, date) in enumerate(data['date']): data['date'][i] = Utils.date_change(date) self.data_lists = data
Example 7
def test_skip_footer_with_invalid(self): with warnings.catch_warnings(): warnings.filterwarnings("ignore") basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n' # Footer too small to get rid of all invalid values assert_raises(ValueError, np.genfromtxt, TextIO(basestr), skip_footer=1) # except ValueError: # pass a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # a = np.genfromtxt(TextIO(basestr), skip_footer=3) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n' a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]])) a = np.genfromtxt( TextIO(basestr), skip_footer=3, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]]))
Example 8
def test_commented_header(self): # Check that names can be retrieved even if the line is commented out. data = TextIO(""" #gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) # The # is part of the first name and should be deleted automatically. test = np.genfromtxt(data, names=True, dtype=None) ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) assert_equal(test, ctrl) # Ditto, but we should get rid of the first element data = TextIO(b""" # gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) test = np.genfromtxt(data, names=True, dtype=None) assert_equal(test, ctrl)
Example 9
def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', np.object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', np.object)])] try: test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) except NotImplementedError: pass else: errmsg = "Nested dtype involving objects should be supported." raise AssertionError(errmsg)
Example 10
def test_replace_space(self): # Test the 'replace_space' option txt = "A.A, B (B), C:C\n1, 2, 3.14" # Test default: replace ' ' by '_' and delete non-alphanum chars test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None) ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no replace, no delete test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, replace_space='', deletechars='') ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no delete (spaces are replaced by _) test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, deletechars='') ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl)
Example 11
def test_names_with_usecols_bug1636(self): # Make sure we pick up the right names w/ usecols data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4" ctrl_names = ("A", "C", "E") test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=(0, 2, 4), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=int, delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names)
Example 12
def test_gft_using_filename(self): # Test that we can load data from a filename as well as a file # object tgt = np.arange(6).reshape((2, 3)) if sys.version_info[0] >= 3: # python 3k is known to fail for '\r' linesep = ('\n', '\r\n') else: linesep = ('\n', '\r\n', '\r') for sep in linesep: data = '0 1 2' + sep + '3 4 5' with temppath() as name: with open(name, 'w') as f: f.write(data) res = np.genfromtxt(name) assert_array_equal(res, tgt)
Example 13
def get_image_data_and_labels(index_file, get_full_path=True, as_list=True): if not os.path.exists(index_file): print 'Error, no index file at path ', index_file return [],[] index_file_dir = os.path.dirname(index_file) data = np.genfromtxt(index_file, dtype='str') labels = data[:,1].astype(int) if as_list: im_data= list(data[:,0]) else: im_data = data[:,0] if get_full_path: im_data_f = [join(index_file_dir,im) for im in im_data ] if not as_list: im_data_f = np.array(im_data_f) else: im_data_f = im_data return im_data_f,labels
Example 14
def main(): drawXtremIOCharts() # data = np.genfromtxt('xtremPerfStats.csv', dtype=float, delimiter=',', names=True) # print data.dtype.names # iops = plot.figure() # iopsInit = len(iops.axes) # bw = plot.figure() # bwInit = len(bw.axes) # latency = plot.figure() # latencyInit = len(latency.axes) # xCpu = plot.figure() # xCpuInit = len(xCpu.axes) # for name in data.dtype.names: # if re.search('iops', name): # drawPlots(data,iops,name,"IOPs",iopsInit+1) # if re.search('bandwidth', name): # drawPlots(data,bw,name,"Bandwidth, MB/s", bwInit+1) # if re.search('latency', name): # drawPlots(data,latency,name,"Latency, MicroSec", latencyInit+1) # if re.search('SC', name): # drawPlots(data,xCpu,name,"% CPU Utilization", xCpuInit+1) # plot.show()
Example 15
def rave(dr=5, usecols=None): """ NAME: rave PURPOSE: Load the RAVE data INPUT: dr= (5) data release usecols= (sequence, optional) indices to read from RAVE data OUTPUT: data table HISTORY: 2016-09-12 - Written - Bovy (UofT) """ filePath, ReadMePath= path.ravePath(dr=dr) if not os.path.exists(filePath): download.rave(dr=dr) if dr == 4: data= astropy.io.ascii.read(filePath,readme=ReadMePath) elif dr == 5: if usecols: data= numpy.genfromtxt(filePath,delimiter=',', names=True, usecols=usecols) else: data= numpy.genfromtxt(filePath,delimiter=',', names=True) return data
Example 16
def __init__(self, **kwargs): logging.info('Crossword __init__: Initializing crossword...') logging.debug('kwargs:', kwargs) # Reading kwargs self.setup = kwargs self.rows = int(kwargs.get('n', 5)) self.cols = int(kwargs.get('m', 5)) self.words_file = str(kwargs.get('word_file', 'lemma.num.txt')) self.sort = bool(kwargs.get('sort', False)) self.maximize_len = bool(kwargs.get('maximize_len', False)) self.repeat_words = bool(kwargs.get('repeat_words', False)) logging.debug('Crossword __init__: n={}, m={}, fname={}'.format(self.rows, self.cols, self.words_file)) # Loading words logging.debug('Crossword __init__: Started loading words from {}'.format(self.words_file)) arr = np.genfromtxt(self.words_file, dtype='str', delimiter=' ') self.words = arr[np.in1d(arr[:, 3], ['v', 'n', 'adv', 'a'])][:, 2].tolist() # Number of words loaded logging.debug('Crossword __init__: Number of words loaded: {}'.format(len(self.words))) self.words = list(set(x for x in self.words if len(x) <= self.rows and len(x) <= self.cols)) if self.sort: self.words = sorted(self.words, key=len, reverse=self.maximize_len) # After filter logging logging.debug('Crossword __init__: Number of words after filter: {}, maxlen = {}'.format(len(self.words), len( max(self.words, key=len))))
Example 17
def test_gd(): ''' A gradient descent and linear regression example to solve y = mx + b equation using gradient descent, m is slope, b is y-intercept by Matt Nedrich Source: http://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/ ''' # read data points = genfromtxt("data/spring.csv", delimiter=",") # initial y-intercept guess b0 = 0 # initial slope guess m0 = 0 # number of iterations to perform the GD n_iter = 1000 for i in range(n_iter): # perform GD iterations b0, m0 = step_gradient(b0, m0, points, 0.0001) print("GD\ti=%d\tb=%f\tm=%f\te=%f\t(y=%f*x+%f)" % (n_iter, b0, m0, compute_error(b0, m0, points), m0, b0))
Example 18
def create_LOFAR_configuration(antfile: str, meta: dict = None) -> Configuration: """ Define from the LOFAR configuration file :param antfile: :param meta: :return: Configuration """ antxyz = numpy.genfromtxt(antfile, skip_header=2, usecols=[1, 2, 3], delimiter=",") nants = antxyz.shape[0] assert antxyz.shape[1] == 3, "Antenna array has wrong shape %s" % antxyz.shape anames = numpy.genfromtxt(antfile, dtype='str', skip_header=2, usecols=[0], delimiter=",") mounts = numpy.repeat('XY', nants) location = EarthLocation(x=[3826923.9] * u.m, y=[460915.1] * u.m, z=[5064643.2] * u.m) fc = Configuration(location=location, names=anames, mount=mounts, xyz=antxyz, frame='global', diameter=35.0) return fc
Example 19
def getCytoRNADataFromCsv(dataPath, batchesPath, batch1, batch2, trainPct = 0.8): data = genfromtxt(dataPath, delimiter=',', skip_header=0) batches = genfromtxt(batchesPath, delimiter=',', skip_header=0) source = data[batches == batch1] target = data[batches == batch2] n_source = source.shape[0] p = np.random.permutation(n_source) cutPt = int(n_source * trainPct) source_train = source[p[:cutPt]] source_test = source[p[cutPt:]] n_target = target.shape[0] p = np.random.permutation(n_target) cutPt = int(n_target * trainPct) target_train = target[p[:cutPt]] target_test = target[p[cutPt:]] return source_train, source_test, target_train, target_test
Example 20
def getCytoRNADataFromCsv(dataPath, batchesPath, batch1, batch2, trainPct = 0.8): data = genfromtxt(dataPath, delimiter=',', skip_header=0) batches = genfromtxt(batchesPath, delimiter=',', skip_header=0) source = data[batches == batch1] target = data[batches == batch2] n_source = source.shape[0] p = np.random.permutation(n_source) cutPt = int(n_source * trainPct) source_train = source[p[:cutPt]] source_test = source[p[cutPt:]] n_target = target.shape[0] p = np.random.permutation(n_target) cutPt = int(n_target * trainPct) target_train = target[p[:cutPt]] target_test = target[p[cutPt:]] return source_train, source_test, target_train, target_test
Example 21
def test_l1l2path(): X_file = 'data_c/X_200_100.csv' Y_file = 'data_c/Y_200_100.csv' X = np.genfromtxt(X_file) Y = np.genfromtxt(Y_file) mu = 1e-3 tau_range = np.logspace(-2,0,3) k_max = 10000 tolerance = 1e-4 pc = pplus.PPlusConnection(debug=False, workers_servers = ('127.0.0.1',)) pc.submit(l1l2path_job, args=(X, Y, mu, tau_range, k_max, tolerance), modules=('numpy as np', 'ctypes')) result_keys = pc.collect() print result_keys print("Done")
Example 22
def __init__(self,Hs,d,slope): Hs = float(Hs) d = float(d) slope = float(slope) battjes = genfromtxt("battjes.csv",delimiter=',') #import table with normalized wave heights from Battjes&Groenendijk 2000, Wave height distribution on shallow foreshores if Hs/d >= 0.78: self.Hs = 0.78*d else: self.Htr = (0.35+5.8*1/slope)*d # Hrms equation .59 The Rock Manual (page 359) self.Hrms = (0.6725 + 0.2025*(Hs/d))*Hs # calculate the normalised Htr HtrNorm = self.Htr / self.Hrms #find nearest to self.Htr in column 1 of Battjes. Choose the value immediately next to it. index = int(HtrNorm / 0.05) + 1 if index > 60: index = 60 #extract the relevant wave heights from Battjes table. self.Hs = battjes[index,3] * self.Hrms self.H2Percent = battjes[index,5] * self.Hrms self.H1Percent = battjes[index,6] * self.Hrms self.Hmax = battjes[index,7] * self.Hrms
Example 23
def getCalibMatrix(dataPath, frameNum): # load calibration data # P0, P1, P2, P3, Tr_velo_to_cam, Tr_imu_to_velo pathCalib = 'calib/{:0>6}.txt'.format(frameNum) P_left = np.genfromtxt(pathCalib,dtype=None,usecols=range(1,13),skip_header=2,skip_footer=4).reshape(3,4) # 4x4 rect_3x3 = np.genfromtxt(pathCalib,dtype=None,usecols=range(1,10),skip_header=4,skip_footer=2).reshape(3,3) # 3x3 velo2cam_3x4 = np.genfromtxt(pathCalib,dtype=None,usecols=range(1,13),skip_header=5,skip_footer=1).reshape(3,4) # 4x4 rect = np.eye(4) velo2cam = np.eye(4) rect[:3,:3] =rect_3x3 velo2cam[:3, :3] = velo2cam_3x4[:3,:3] velo2cam[:3, 3] = velo2cam_3x4[:3, 3] return {'P_left':P_left,'rect':rect,'velo2cam':velo2cam}
Example 24
def getCalibMatrix(dataPath, frameNum): # load calibration data # P0, P1, P2, P3, Tr_velo_to_cam, Tr_imu_to_velo pathCalib = dataPath+'calib/{:0>6}.txt'.format(frameNum) P_left = np.genfromtxt(pathCalib,dtype=None,usecols=range(1,13),skip_header=2,skip_footer=4).reshape(3,4) # 4x4 rect_3x3 = np.genfromtxt(pathCalib,dtype=None,usecols=range(1,10),skip_header=4,skip_footer=2).reshape(3,3) # 3x3 velo2cam_3x4 = np.genfromtxt(pathCalib,dtype=None,usecols=range(1,13),skip_header=5,skip_footer=1).reshape(3,4) # 4x4 rect = np.eye(4) velo2cam = np.eye(4) rect[:3,:3] =rect_3x3 velo2cam[:3, :3] = velo2cam_3x4[:3,:3] velo2cam[:3, 3] = velo2cam_3x4[:3, 3] return {'P_left':P_left,'rect':rect,'velo2cam':velo2cam}
Example 25
def run(self, args, extra_args): if args.output_file is not None: output_file = os.path.realpath(args.output_file) else: output_file = os.path.realpath(args.input_protocol) additional_files = [] if args.additional_files: for file in args.additional_files: additional_files.append(np.genfromtxt(file)) protocol = mdt.load_protocol(os.path.realpath(args.input_protocol)) context_dict = {name: protocol.get_column(name) for name in protocol.column_names} exec(args.expr, {'np': np, 'files': additional_files}, context_dict) for key in context_dict: if is_scalar(context_dict[key]): context_dict[key] = np.ones(protocol.length) * context_dict[key] protocol = Protocol(context_dict) mdt.write_protocol(protocol, output_file)
Example 26
def with_added_column_from_file(self, name, file_name, multiplication_factor=1): """Create a copy of this protocol with the given column (loaded from a file) added to this protocol. The given file can either contain a single value or one value per protocol line. Args: name (str): The name of the column to add. file_name (str): The file to get the column from. multiplication_factor (double): we might need to scale the data by a constant. For example, if the data in the file is in ms we might need to scale it to seconds by multiplying with 1e-3 Returns: self: for chaining """ columns = copy.copy(self._columns) if name == 'g': columns.update(get_g_columns(file_name)) for column_name in ('gx', 'gy', 'gz'): columns[column_name] *= multiplication_factor return Protocol(columns) else: data = np.genfromtxt(file_name) data *= multiplication_factor return self.with_new_column(name, data)
Example 27
def load_edges(fpath, delimiter=None, has_header=False): """Load edges in CSV format as numpy ndarray of strings. Args: fpath (str): edges file delimiter (str): alternative argument name for sep (default=None) has_header (bool): True if has header row Returns: np.ndarray: array of edges """ if PANDAS_INSTALLED: header = 'infer' if has_header else None df = pd.read_csv(fpath, delimiter=delimiter, header=header) edges = df.values else: logger.warning("Pandas not installed. Using numpy to load csv, which " "is slower.") header = 1 if has_header else 0 edges = np.genfromtxt(fpath, delimiter=delimiter, skip_header=header, dtype=object) return edges.astype('str')
Example 28
def read_xyt_frame( n=1 ): ''' Load the xyt txt files: x,y is the detector (x,y) coordinates t is the time-encoder (when hitting the detector at that (x,y)) DATA_DIR is the data filefold path DataPref is the data prefix n is file number the data name will be like: DATA_DIR/DataPref_0001.txt return the histogram of the hitting event ''' import numpy as np ni = '%04d'%n fp = DATA_DIR + DataPref + '%s.txt'%ni data = np.genfromtxt( fp, skiprows=0)[:,2] #take the time encoder td = np.histogram( data, bins= np.arange(11810) )[0] #do histogram return td
Example 29
def read_xyt_frame( n=1 ): ''' Load the xyt txt files: x,y is the detector (x,y) coordinates t is the time-encoder (when hitting the detector at that (x,y)) DATA_DIR is the data filefold path DataPref is the data prefix n is file number the data name will be like: DATA_DIR/DataPref_0001.txt return the histogram of the hitting event ''' import numpy as np ni = '%04d'%n fp = DATA_DIR + DataPref + '%s.txt'%ni data = np.genfromtxt( fp, skiprows=0)[:,2] #take the time encoder td = np.histogram( data, bins= np.arange(11810) )[0] #do histogram return td
Example 30
def read_xyt_frame( n=1 ): ''' Load the xyt txt files: x,y is the detector (x,y) coordinates t is the time-encoder (when hitting the detector at that (x,y)) DATA_DIR is the data filefold path DataPref is the data prefix n is file number the data name will be like: DATA_DIR/DataPref_0001.txt return the histogram of the hitting event ''' import numpy as np ni = '%04d'%n fp = DATA_DIR + DataPref + '%s.txt'%ni data = np.genfromtxt( fp, skiprows=0)[:,2] #take the time encoder td = np.histogram( data, bins= np.arange(11810) )[0] #do histogram return td
Example 31
def check_subjects(subjects_info): "Ensure subjects are provided and their data exist." if isinstance(subjects_info, str): if not pexists(subjects_info): raise IOError('path to subject list does not exist: {}'.format(subjects_info)) subjects_list = np.genfromtxt(subjects_info, dtype=str) elif isinstance(subjects_info, collections.Iterable): if len(subjects_info) < 1: raise ValueError('Empty subject list.') subjects_list = subjects_info else: raise ValueError('Invalid value provided for subject list. \n ' 'Must be a list of paths, or path to file containing list of paths, one for each subject.') subject_id_list = np.atleast_1d(subjects_list) num_subjects = subject_id_list.size if num_subjects < 1: raise ValueError('Input subject list is empty.') num_digits_id_size = len(str(num_subjects)) max_id_width = max(map(len, subject_id_list)) return subject_id_list, num_subjects, max_id_width, num_digits_id_size
Example 32
def write_preprocessed_data(output_directory, cell_IDs, cell_stages, data, markers): processed_data_path = path.join(output_directory, 'processed_data.tsv') with open(processed_data_path, 'w') as f: f.write('\t'.join(cell_IDs)) f.write('\n') f.write('\t'.join(cell_stages)) f.write('\n') np.savetxt(f, data.T, fmt = '%.6f', delimiter = '\t') dataset = np.genfromtxt(processed_data_path, delimiter = '\t', dtype = str) dataset = np.insert(dataset, 0, np.append(['Cell ID', 'Stage'], markers), axis = 1) with open(processed_data_path, 'w') as f: np.savetxt(f, dataset, fmt = '%s', delimiter = '\t')
Example 33
def test_skip_footer_with_invalid(self): with warnings.catch_warnings(): warnings.filterwarnings("ignore") basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n' # Footer too small to get rid of all invalid values assert_raises(ValueError, np.genfromtxt, TextIO(basestr), skip_footer=1) # except ValueError: # pass a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # a = np.genfromtxt(TextIO(basestr), skip_footer=3) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n' a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]])) a = np.genfromtxt( TextIO(basestr), skip_footer=3, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]]))
Example 34
def test_commented_header(self): # Check that names can be retrieved even if the line is commented out. data = TextIO(""" #gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) # The # is part of the first name and should be deleted automatically. test = np.genfromtxt(data, names=True, dtype=None) ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) assert_equal(test, ctrl) # Ditto, but we should get rid of the first element data = TextIO(b""" # gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) test = np.genfromtxt(data, names=True, dtype=None) assert_equal(test, ctrl)
Example 35
def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', np.object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', np.object)])] try: test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) except NotImplementedError: pass else: errmsg = "Nested dtype involving objects should be supported." raise AssertionError(errmsg)
Example 36
def test_replace_space(self): # Test the 'replace_space' option txt = "A.A, B (B), C:C\n1, 2, 3.14" # Test default: replace ' ' by '_' and delete non-alphanum chars test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None) ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no replace, no delete test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, replace_space='', deletechars='') ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no delete (spaces are replaced by _) test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, deletechars='') ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl)
Example 37
def test_names_with_usecols_bug1636(self): # Make sure we pick up the right names w/ usecols data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4" ctrl_names = ("A", "C", "E") test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=(0, 2, 4), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=int, delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names)
Example 38
def test_gft_using_filename(self): # Test that we can load data from a filename as well as a file # object tgt = np.arange(6).reshape((2, 3)) if sys.version_info[0] >= 3: # python 3k is known to fail for '\r' linesep = ('\n', '\r\n') else: linesep = ('\n', '\r\n', '\r') for sep in linesep: data = '0 1 2' + sep + '3 4 5' with temppath() as name: with open(name, 'w') as f: f.write(data) res = np.genfromtxt(name) assert_array_equal(res, tgt)
Example 39
def read_file_to_np(self, file_name): datatype = [('time',np.float32), ('ax',np.int16), ('ay',np.int16), ('az',np.int16), ('gx',np.int16), ('gy',np.int16), ('gz',np.int16), ('mx',np.int16), ('my',np.int16), ('mz',np.int16), ('time_diff', np.float32)] data = np.genfromtxt(file_name, dtype=datatype, delimiter="\t") data['time'] = data['time']-data['time'][0] a = np.diff(data['time']) time_diff_array = np.insert(a, 0, 0) data['time_diff'] = time_diff_array # ????? data['mx'] = data['mx'] * 1.18359375 data['my'] = data['my'] * 1.19140625 data['mz'] = data['mz'] * 1.14453125 return data
Example 40
def get_overlapping_files(self, path, ra, dec, width): """ This function ... :param path to the directory with the images :param ra: :param dec: :param width: :return: """ # Generate the meta and then overlap file meta_path, overlap_path = self.generate_meta_and_overlap_file(path, ra, dec, width) # Load the overlap table overlap_files = np.genfromtxt(overlap_path, skip_header=3, usecols=[32], dtype="S500") # Return the names of the overlapping images return overlap_files # -----------------------------------------------------------------
Example 41
def get_overlapping_files(self, path, ra, dec, width): """ This function ... :param path to the directory with the images :param ra: :param dec: :param width: :return: """ # Generate the meta and then overlap file meta_path, overlap_path = self.generate_meta_and_overlap_file(path, ra, dec, width) # Load the overlap table overlap_files = np.genfromtxt(overlap_path, skip_header=3, usecols=[32], dtype="S500") # Return the names of the overlapping images return overlap_files # -----------------------------------------------------------------
Example 42
def read_gpl(self): dtype = [('waves',float),]+[('spec%i'%(i+1),float) for i in range(len(self.age))] self.sed = np.genfromtxt(self.workdir+self.csp_output+'.spec',dtype=dtype) age3, Q = np.genfromtxt(self.workdir+self.csp_output+'.3color', usecols=(0,5), unpack=True) age4, M = np.genfromtxt(self.workdir+self.csp_output+'.4color', usecols=(0,6), unpack=True) for x,age in zip(self.sed.dtype.names[1:],self.age): self.sed[x] = self.sed[x] * 3.839e33 self.sed[x][self.sed["waves"] < 912.] = self.sed[x][self.sed["waves"] < 912.] * self.lyc_esc log_age = np.log10(age*1e9) diff = abs(age3 - log_age) self.Q[x] = Q[diff == min(diff)][0] diff = abs(age4 - log_age) self.M_unnorm[x] = M[diff == min(diff)][0]
Example 43
def main(opts): vertices = np.genfromtxt('points.dat', delimiter=' ', skip_header=1) npoints, dim = vertices.shape assert dim == 3 faces = np.genfromtxt('indices.dat', delimiter=' ') # Generated from alpha_shape # Create the mesh cube = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) for i, f in enumerate(faces): for j in range(3): cube.vectors[i][j] = vertices[f[j],:] # Write the mesh to file cube.save(opts.new_file_name)
Example 44
def read_array(filename): ''' Read array and convert to 2d np arrays ''' array = np.genfromtxt(filename, dtype=float) if len(array.shape)==1: array = array.reshape( -1, 1 ) return array
Example 45
def file_to_array (filename, verbose=False): ''' Converts a file to a list of list of STRING It differs from np.genfromtxt in that the number of columns doesn't need to be constant''' data =[] with open(filename, "r") as data_file: if verbose: print ("Reading {}...".format(filename)) lines = data_file.readlines() if verbose: print ("Converting {} to correct array...".format(filename)) data = [lines[i].strip().split() for i in range (len(lines))] del lines #djajetic 11.11.2015 questionable return data
Example 46
def load_iris(): try: # Load Iris dataset from the sklearn.datasets package from sklearn import datasets from sklearn import decomposition # Load Dataset iris = datasets.load_iris() X = iris.data y = iris.target labels = iris.target_names # Reduce components by Principal Component Analysis from sklearn X = decomposition.PCA(n_components=3).fit_transform(X) except ImportError: # Load Iris dataset manually path = os.path.join('data', 'iris', 'iris.data') iris_data = np.genfromtxt(path, dtype='str', delimiter=',') X = iris_data[:, :4].astype(dtype=float) y = np.ndarray((X.shape[0],), dtype=int) # Create target vector y and corresponding labels labels, idx = [], 0 for i, label in enumerate(iris_data[:, 4]): label = label.split('-')[1] if label not in labels: labels.append(label); idx += 1 y[i] = idx - 1 # Reduce components by implemented Principal Component Analysis X = PCA(X, 3)[0] return X, y, labels
Example 47
def read_model_table(modelfile): ''' This reads a downloaded TRILEGAL model file. ''' infd = gzip.open(modelfile) model = np.genfromtxt(infd,names=True) infd.close() return model
Example 48
def test_stats2(): """Test stats2 func from fluxpart.util""" data = "7 8 4\n6 1 3\n10 6 6\n6 7 3\n8 2 4" dtype = [('v0', int), ('v1', int), ('v2', int)] arr = np.genfromtxt(io.BytesIO(data.encode()), dtype=dtype) ans = stats2(arr) npt.assert_allclose(ans.ave_v0, 37 / 5) npt.assert_allclose(ans.ave_v1, 24 / 5) npt.assert_allclose(ans.ave_v2, 4) npt.assert_allclose(ans.var_v0, 14 / 5) npt.assert_allclose(ans.var_v1, 97 / 10) npt.assert_allclose(ans.var_v2, 3 / 2) npt.assert_allclose(ans.cov_v0_v1, 3 / 5) npt.assert_allclose(ans.cov_v0_v2, 2) npt.assert_allclose(ans.cov_v1_v0, ans.cov_v0_v1) npt.assert_allclose(ans.cov_v1_v2, 1) npt.assert_allclose(ans.cov_v2_v0, ans.cov_v0_v2) npt.assert_allclose(ans.cov_v2_v1, ans.cov_v1_v2) data = "7 8 4\n6 1 3\n10 6 6\n6 7 3\n8 2 4" dtype = [('v0', int), ('v1', int), ('v2', int)] arr = np.genfromtxt(io.BytesIO(data.encode()), dtype=dtype) ans = stats2(arr, names=('v0', 'v2')) npt.assert_allclose(ans.ave_v0, 37 / 5) npt.assert_allclose(ans.ave_v2, 4) npt.assert_allclose(ans.var_v0, 14 / 5) npt.assert_allclose(ans.var_v2, 3 / 2) npt.assert_allclose(ans.cov_v0_v2, 2) npt.assert_allclose(ans.cov_v2_v0, ans.cov_v0_v2) assert not hasattr(ans, 'ave_v1') assert not hasattr(ans, 'var_v1') assert not hasattr(ans, 'cov_v0_v1') assert not hasattr(ans, 'cov_v1_v0') assert not hasattr(ans, 'cov_v1_v2') assert not hasattr(ans, 'cov_v2_v1')
Example 49
def merge_results(sol,files): model = get_model_type(sol) save_where = '/Batch results/' working_path = getcwd().replace("\\", "/")+"/" save_path = working_path+save_where print("\nChecking for longest csv file") lengths = [] for f in files: to_merge_temp = working_path+"/Results/%s/INV_%s-%s_%s.csv" %(f,sol.model,model,f) headers_temp = np.genfromtxt(to_merge_temp, delimiter=",", dtype=str, skip_footer=1) lengths.append(len(headers_temp)) to_merge_max = working_path+"/Results/%s/INV_%s-%s_%s.csv" %(files[lengths.index(max(lengths))],sol.model,model,files[lengths.index(max(lengths))]) headers = np.genfromtxt(to_merge_max, delimiter=",", dtype=str, skip_footer=1) print("\nMerging csv files") if not path.exists(save_path): makedirs(save_path) # to_merge = working_path+"/Results/%s/INV_%s_%s.csv" %(files[0],model,files[0]) # headers = np.genfromtxt(to_merge, delimiter=",", dtype=str, skip_footer=1) merged_inv_results = np.zeros((len(files), len(headers))) merged_inv_results.fill(np.nan) for i, f in enumerate(files): to_add = np.loadtxt(working_path+"/Results/%s/INV_%s-%s_%s.csv" %(f,sol.model,model,f), delimiter=",", skiprows=1) merged_inv_results[i][:to_add.shape[0]] = to_add rows = np.array(files, dtype=str)[:, np.newaxis] hd = ",".join(["ID"] + list(headers)) np.savetxt(save_path+"Merged_%s-%s_%s_TO_%s.csv" %(sol.model,model,files[0],files[-1]), np.hstack((rows, merged_inv_results)), delimiter=",", header=hd, fmt="%s") print("Batch file successfully saved in:\n", save_path)
Example 50
def merge_results(sol,files): model = get_model_type(sol) save_where = '/Batch results/' working_path = getcwd().replace("\\", "/")+"/" save_path = working_path+save_where print("\nChecking for longest csv file") lengths = [] for f in files: to_merge_temp = working_path+"/Results/%s/INV_%s-%s_%s.csv" %(f,sol.model,model,f) headers_temp = np.genfromtxt(to_merge_temp, delimiter=",", dtype=str, skip_footer=1) lengths.append(len(headers_temp)) to_merge_max = working_path+"/Results/%s/INV_%s-%s_%s.csv" %(files[lengths.index(max(lengths))],sol.model,model,files[lengths.index(max(lengths))]) headers = np.genfromtxt(to_merge_max, delimiter=",", dtype=str, skip_footer=1) print("\nMerging csv files") if not path.exists(save_path): makedirs(save_path) # to_merge = working_path+"/Results/%s/INV_%s_%s.csv" %(files[0],model,files[0]) # headers = np.genfromtxt(to_merge, delimiter=",", dtype=str, skip_footer=1) merged_inv_results = np.zeros((len(files), len(headers))) merged_inv_results.fill(np.nan) for i, f in enumerate(files): to_add = np.loadtxt(working_path+"/Results/%s/INV_%s-%s_%s.csv" %(f,sol.model,model,f), delimiter=",", skiprows=1) merged_inv_results[i][:to_add.shape[0]] = to_add rows = np.array(files, dtype=str)[:, np.newaxis] hd = ",".join(["ID"] + list(headers)) np.savetxt(save_path+"Merged_%s-%s_%s_TO_%s.csv" %(sol.model,model,files[0],files[-1]), np.hstack((rows, merged_inv_results)), delimiter=",", header=hd, fmt="%s") print("Batch file successfully saved in:\n", save_path)