The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def saveHintonPlot(self, matrix, num_tests, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" fig,ax = plt.subplots(1,1) if not max_weight: max_weight = 2**np.ceil(np.log(np.abs(matrix).max())/np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(0.5*w/num_tests)) # Need to scale so that it is between 0 and 0.5 rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis() plt.savefig(self.figures_path + self.save_prefix + '-Hinton.eps') plt.close()
Example 2
def cal_hist(self, t1, t2, data1_maxlen, hist_size): mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32) d1len = len(self.data1[t1]) if self.use_hist_feats: assert (t1, t2) in self.hist_feats caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size)) if d1len < data1_maxlen: mhist[:d1len, :] = caled_hist[:, :] else: mhist[:, :] = caled_hist[:data1_maxlen, :] else: t1_rep = self.embed[self.data1[t1]] t2_rep = self.embed[self.data2[t2]] mm = t1_rep.dot(np.transpose(t2_rep)) for (i,j), v in np.ndenumerate(mm): if i >= data1_maxlen: break vid = int((v + 1.) / 2. * ( hist_size - 1.)) mhist[i][vid] += 1. mhist += 1. mhist = np.log10(mhist) return mhist
Example 3
def cal_hist(self, t1, t2, data1_maxlen, hist_size): mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32) t1_cont = list(self.data1[t1]) t2_cont = list(self.data2[t2]) d1len = len(t1_cont) if self.use_hist_feats: assert (t1, t2) in self.hist_feats caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size)) if d1len < data1_maxlen: mhist[:d1len, :] = caled_hist[:, :] else: mhist[:, :] = caled_hist[:data1_maxlen, :] else: t1_rep = self.embed[t1_cont] t2_rep = self.embed[t2_cont] mm = t1_rep.dot(np.transpose(t2_rep)) for (i,j), v in np.ndenumerate(mm): if i >= data1_maxlen: break vid = int((v + 1.) / 2. * ( hist_size - 1.)) mhist[i][vid] += 1. mhist += 1. mhist = np.log10(mhist) return mhist
Example 4
def cal_hist(self, t1, t2, data1_maxlen, hist_size): mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32) t1_cont = list(self.data1[t1]) t2_cont = list(self.data2[t2]) d1len = len(t1_cont) if self.use_hist_feats: assert (t1, t2) in self.hist_feats curr_pair_feats = list(self.hist_feats[(t1, t2)]) caled_hist = np.reshape(curr_pair_feats, (d1len, hist_size)) if d1len < data1_maxlen: mhist[:d1len, :] = caled_hist[:, :] else: mhist[:, :] = caled_hist[:data1_maxlen, :] else: t1_rep = self.embed[t1_cont] t2_rep = self.embed[t2_cont] mm = t1_rep.dot(np.transpose(t2_rep)) for (i,j), v in np.ndenumerate(mm): if i >= data1_maxlen: break vid = int((v + 1.) / 2. * ( hist_size - 1.)) mhist[i][vid] += 1. mhist += 1. mhist = np.log10(mhist) return mhist
Example 5
def cal_hist(self, t1, t2, data1_maxlen, hist_size): mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32) t1_cont = list(self.data1[t1]) t2_cont = list(self.data2[t2]) d1len = len(t1_cont) if self.use_hist_feats: assert (t1, t2) in self.hist_feats caled_hist = np.reshape(self.hist_feats[(t1, t2)], (d1len, hist_size)) if d1len < data1_maxlen: mhist[:d1len, :] = caled_hist[:, :] else: mhist[:, :] = caled_hist[:data1_maxlen, :] else: t1_rep = self.embed[t1_cont] t2_rep = self.embed[t2_cont] mm = t1_rep.dot(np.transpose(t2_rep)) for (i,j), v in np.ndenumerate(mm): if i >= data1_maxlen: break vid = int((v + 1.) / 2. * ( hist_size - 1.)) mhist[i][vid] += 1. mhist += 1. mhist = np.log10(mhist) return mhist
Example 6
def cal_hist(self, t1, t2, data1_maxlen, hist_size): mhist = np.zeros((data1_maxlen, hist_size), dtype=np.float32) t1_cont = list(self.data1[t1]) t2_cont = list(self.data2[t2]) d1len = len(t1_cont) if self.use_hist_feats: assert (t1, t2) in self.hist_feats curr_pair_feats = list(self.hist_feats[(t1, t2)]) caled_hist = np.reshape(curr_pair_feats, (d1len, hist_size)) if d1len < data1_maxlen: mhist[:d1len, :] = caled_hist[:, :] else: mhist[:, :] = caled_hist[:data1_maxlen, :] else: t1_rep = self.embed[t1_cont] t2_rep = self.embed[t2_cont] mm = t1_rep.dot(np.transpose(t2_rep)) for (i,j), v in np.ndenumerate(mm): if i >= data1_maxlen: break vid = int((v + 1.) / 2. * ( hist_size - 1.)) mhist[i][vid] += 1. mhist += 1. mhist = np.log10(mhist) return mhist
Example 7
def write_pml_elems(sorted_pml_elems, pmlfile="elems_pml.dyn"): """Create a new elements file that the PML elements. :param sorted_pml_elems: :param pmlfile: default = elems_pml.dyn :returns: """ from numpy import ndenumerate pml = open(pmlfile, 'w') pml.write('$ PML elements generated by bc.py\n') pml.write('*ELEMENT_SOLID\n') for i, e in ndenumerate(sorted_pml_elems): pml.write('%i,%i,%i,%i,%i,%i,%i,%i,%i,%i\n' % (e['id'], e['pid'], e['n1'], e['n2'], e['n3'], e['n4'], e['n5'], e['n6'], e['n7'], e['n8'])) pml.write('*END\n') pml.close() return 0
Example 8
def generate_data(sample_size=200, pd=[[0.4, 0.4], [0.1, 0.1]]): pd = np.array(pd) pd /= pd.sum() offset = 50 bins = np.r_[np.zeros((1,)), np.cumsum(pd)] bin_counts = np.histogram(np.random.rand(sample_size), bins)[0] data = np.empty((0, 2)) targets = [] for ((i, j), p), count in zip(np.ndenumerate(pd), bin_counts): xs = np.random.uniform(low=0.0, high=50.0, size=count) + j * offset ys = np.random.uniform(low=0.0, high=50.0, size=count) + -i * offset data = np.vstack((data, np.c_[xs, ys])) if i == j: targets.extend([1] * count) else: targets.extend([-1] * count) return np.c_[data, targets]
Example 9
def finite_diff_gradients(self, f, delta=1e-6): """ f is called without parameters, the changes in the parameters happen as a side effect """ gradients = dict() fx = f() for p in self.parameters_to_optimise: original = self.parameters[p].get_value() grad = np.zeros_like(original) if np.prod(original.shape) > 1: for index, _ in np.ndenumerate(original): xh = original.copy() xh[index] += delta self.parameters[p].set_value(xh) grad[index] = (f() - fx) / delta self.parameters[p].set_value(original) else: xh = original.copy() xh += delta self.parameters[p].set_value(xh) grad = (f() - fx) / delta self.parameters[p].set_value(original) gradients[p] = grad return gradients
Example 10
def test_reduce_sum_axis_zero(): ctx = ndarray.gpu(0) shape = (500, 200, 100) to_shape = (200, 100) x = np.random.uniform(0, 20, shape).astype(np.float32) arr_x = ndarray.array(x, ctx=ctx) arr_y = ndarray.empty(to_shape, ctx=ctx) gpu_op.reduce_sum_axis_zero(arr_x, arr_y) y = arr_y.asnumpy() y_ = np.sum(x, axis=0) for index, _ in np.ndenumerate(y): v = y[index] v_ = y_[index] if abs((v - v_) / v_) > 1e-4: print(index, v, v_) np.testing.assert_allclose(np.sum(x, axis=0), y, rtol=1e-5)
Example 11
def _dateToISO(indict): """ covert datetimes to iso strings inside of datamodel attributes """ retdict = dmcopy(indict) if isinstance(indict, dict): for key in indict: if isinstance(indict[key], datetime.datetime): retdict[key] = retdict[key].isoformat() elif hasattr(indict[key], '__iter__'): for idx, el in enumerate(indict[key]): if isinstance(el, datetime.datetime): retdict[key][idx] = el.isoformat() else: if isinstance(indict, datetime.datetime): retdict = retdict.isoformat() elif hasattr(indict, '__iter__'): retdict = numpy.asanyarray(indict) for idx, el in numpy.ndenumerate(indict): if isinstance(el, datetime.datetime): retdict[idx] = el.isoformat() return retdict
Example 12
def _flatten_data(data, chart_cfg, switch_zy=False): plot_axes_def = [(0, XAxis), (1, YAxis)] # Inject categories into the axis definitions of the plot if isinstance(data, NDFrame): for i, plot_axis in plot_axes_def[:data.ndim]: categories = data.axes[i] # Skip numeric indices if not categories.is_numeric(): chart_cfg = chart_cfg.inherit_many(plot_axis(categories=list(categories))) data = [list(index) + [value] for index, value in list(np.ndenumerate(data))] if switch_zy: for i in xrange(len(data)): tmp = data[i][-1] data[i][-1] = data[i][-2] data[i][-2] = tmp return data, chart_cfg
Example 13
def returnAmplitudeFromListOfFunctionValues(self, listOfFunctionValues, additive=False): """Helper function for the amplitude setting function [f(x), g(y), ...] additive=True => F(x, y, ...) = f(x) + g(y) + ... additive=False => F(x, y, ...) = f(x) * g(y) * ...""" output = self.functionSpaceZero() if additive: initialValue = 0.0 else: initialValue = 1.0 for indexTuple, value in np.ndenumerate(output): newValue = initialValue for tupleIndex, tupleValue in enumerate(indexTuple): if additive: newValue += listOfFunctionValues[tupleIndex][tupleValue] else: newValue *= listOfFunctionValues[tupleIndex][tupleValue] output[indexTuple] = newValue return output
Example 14
def generate(width, height, s, output): canvas = np.zeros((height, width), dtype='float64') max_d = math.sqrt(width**2 + height**2) / 2 offset_angular = 0 if (width >= height): offset_angular = math.pi / 4 for (i, j), _ in np.ndenumerate(canvas): y = height // 2 - i x = j - width // 2 d = math.sqrt(x**2 + y**2) t = math.atan2(y, x) canvas[i,j] = (255 / 4) * \ (2 + radial_sin(d, s, t) + angular_sin ( d, t, max_d, s, offset_angular)) f = open(output, 'wb') w = png.Writer(width, height, greyscale=True) w.write(f, canvas) f.close()
Example 15
def sample(self): self._update_m() indices = np.ndenumerate(self.count_k_by_j) lgg.debug('Sample m...') for ind in indices: j, k = ind[0] count = ind[1] if count > 0: # Sample number of tables in j serving dishe k params = self.prob_jk(j, k) sample = categorical(params) + 1 else: sample = 0 self.m[j, k] = sample self.m_dotk = self.m.sum(0) self.purge_empty_tables() return self.m
Example 16
def cartopy_xlim(self, geobounds): """Return the x extents in projected coordinates for cartopy. Returns: :obj:`list`: A pair of [xmin, xmax]. See Also: :mod:`cartopy`, :mod:`matplotlib` """ try: _ = len(geobounds) except TypeError: x_extents= self._cart_extents(geobounds)[0] else: extents = self._cart_extents(geobounds) x_extents = np.empty(extents.shape, np.object) for idxs, extent in np.ndenumerate(extents): x_extents[idxs] = extent[0] return x_extents
Example 17
def cartopy_ylim(self, geobounds): """Return the y extents in projected coordinates for cartopy. Returns: :obj:`list`: A pair of [ymin, ymax]. See Also: :mod:`cartopy`, :mod:`matplotlib` """ try: _ = len(geobounds) except TypeError: y_extents= self._cart_extents(geobounds)[1] else: extents = self._cart_extents(geobounds) y_extents = np.empty(extents.shape, np.object) for idxs, extent in np.ndenumerate(extents): y_extents[idxs] = extent[1] return y_extents
Example 18
def detect_face_12net(cls_prob,roi,out_side,scale,width,height,threshold): in_side = 2*out_side+11 stride = 0 if out_side != 1: stride = float(in_side-12)/(out_side-1) boundingBox = [] for (x,y), prob in np.ndenumerate(cls_prob): if(prob >= threshold): original_x1 = int((stride*x + 1)*scale) original_y1 = int((stride*y + 1)*scale) original_w = int((12.0 -1)*scale) original_h = int((12.0 -1)*scale) original_x2 = original_x1 + original_w original_y2 = original_y1 + original_h rect = [] x1 = int(round(max(0 , original_x1 + original_w * roi[0][x][y]))) y1 = int(round(max(0 , original_y1 + original_h * roi[1][x][y]))) x2 = int(round(min(width , original_x2 + original_w * roi[2][x][y]))) y2 = int(round(min(height, original_y2 + original_h * roi[3][x][y]))) if x2>x1 and y2>y1: rect = [x1,y1,x2,y2,prob] boundingBox.append(rect) return NMS(boundingBox,0.5,'iou')
Example 19
def hinton(matrix, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" ax = ax if ax is not None else plt.gca() if not max_weight: max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis()
Example 20
def sample_crp_tablecounts(concentration,customers,colweights): m = np.zeros_like(customers) tot = customers.sum() randseq = np.random.random(tot) starts = np.empty_like(customers) starts[0,0] = 0 starts.flat[1:] = np.cumsum(np.ravel(customers)[:customers.size-1]) for (i,j), n in np.ndenumerate(customers): w = colweights[j] for k in xrange(n): m[i,j] += randseq[starts[i,j]+k] \ < (concentration * w) / (k + concentration * w) return m ### Entropy
Example 21
def sample_crp_tablecounts(concentration,customers,colweights): m = np.zeros_like(customers) tot = customers.sum() randseq = np.random.random(tot) starts = np.empty_like(customers) starts[0,0] = 0 starts.flat[1:] = np.cumsum(np.ravel(customers)[:customers.size-1]) for (i,j), n in np.ndenumerate(customers): w = colweights[j] for k in xrange(n): m[i,j] += randseq[starts[i,j]+k] \ < (concentration * w) / (k + concentration * w) return m ### Entropy
Example 22
def hmm_trans_matrix(self): # NOTE: more general version, allows different delays, o/w we could # construct with np.kron if self._hmm_trans_matrix is None: ps, delays = map(np.array,zip(*[(d.p,d.delay) for d in self.dur_distns])) starts, ends = cumsum(delays,strict=True), cumsum(delays,strict=False) trans_matrix = self._hmm_trans_matrix = np.zeros((ends[-1],ends[-1])) for (i,j), Aij in np.ndenumerate(self.trans_matrix): block = trans_matrix[starts[i]:ends[i],starts[j]:ends[j]] if i == j: block[:-1,1:] = np.eye(block.shape[0]-1) block[-1,-1] = 1-ps[i] else: block[-1,0] = ps[j]*Aij return self._hmm_trans_matrix
Example 23
def mf_bwd_trans_matrix(self): rs = self.rs starts, ends = cumsum(rs,strict=True), cumsum(rs,strict=False) trans_matrix = np.zeros((ends[-1],ends[-1])) Elnps, Eln1mps = zip(*[d._fixedr_distns[d.ridx]._mf_expected_statistics() for d in self.dur_distns]) Eps, E1mps = np.exp(Elnps), np.exp(Eln1mps) # NOTE: actually exp(E[ln(p)]) etc enters = self.mf_bwd_enter_rows(rs,Eps,E1mps) for (i,j), Aij in np.ndenumerate(self.mf_trans_matrix): block = trans_matrix[starts[i]:ends[i],starts[j]:ends[j]] block[-1,:] = Aij * eE1mps[i] * enters[j] if i == j: block[...] += np.diag(np.repeat(eEps[i],rs[i])) \ + np.diag(np.repeat(eE1mps[i],rs[i]-1),k=1) assert np.all(trans_matrix >= 0) return trans_matrix
Example 24
def hmm_trans_matrix_orig(self): rs, ps, delays = self.rs, self.ps, self.delays starts, ends = cumsum(rs+delays,strict=True), cumsum(rs+delays,strict=False) trans_matrix = np.zeros((ends[-1],ends[-1])) enters = self.bwd_enter_rows for (i,j), Aij in np.ndenumerate(self.trans_matrix): block = trans_matrix[starts[i]:ends[i],starts[j]:ends[j]] if delays[i] == 0: block[-1,:rs[j]] = Aij * enters[j] * (1-ps[i]) else: block[-1,:rs[j]] = Aij * enters[j] if i == j: block[:rs[i],:rs[i]] += \ np.diag(np.repeat(ps[i],rs[i])) + np.diag(np.repeat(1-ps[i],rs[i]-1),k=1) if delays[i] > 0: block[rs[i]-1,rs[i]] = (1-ps[i]) block[rs[i]:,rs[i]:] = np.eye(delays[i],k=1) assert np.allclose(trans_matrix.sum(1),1.) return trans_matrix
Example 25
def hmm_trans_matrix_1(self): rs, ps, delays = self.rs, self.ps, self.delays starts, ends = cumsum(rs+delays,strict=True), cumsum(rs+delays,strict=False) trans_matrix = np.zeros((ends[-1],ends[-1])) enters = self.bwd_enter_rows for (i,j), Aij in np.ndenumerate(self.trans_matrix): block = trans_matrix[starts[i]:ends[i],starts[j]:ends[j]] block[-1,:rs[j]] = Aij * enters[j] * (1-ps[i]) if i == j: block[-rs[i]:,-rs[i]:] += \ np.diag(np.repeat(ps[i],rs[i])) + np.diag(np.repeat(1-ps[i],rs[i]-1),k=1) if delays[i] > 0: block[:delays[i]:,:delays[i]] = np.eye(delays[i],k=1) block[delays[i]-1,delays[i]] = 1 assert np.allclose(trans_matrix.sum(1),1.) return trans_matrix
Example 26
def hmm_trans_matrix_2(self): rs, ps, delays = self.rs, self.ps, self.delays starts, ends = cumsum(rs+delays,strict=True), cumsum(rs+delays,strict=False) trans_matrix = np.zeros((ends[-1],ends[-1])) enters = self.bwd_enter_rows for (i,j), Aij in np.ndenumerate(self.trans_matrix): block = trans_matrix[starts[i]:ends[i],starts[j]:ends[j]] block[-1,0] = Aij * (1-ps[i]) if i == j: block[-rs[i]:,-rs[i]:] += \ np.diag(np.repeat(ps[i],rs[i])) + np.diag(np.repeat(1-ps[i],rs[i]-1),k=1) if delays[i] > 0: block[:delays[i]:,:delays[i]] = np.eye(delays[i],k=1) block[delays[i]-1,-rs[i]:] = enters[i] assert np.allclose(trans_matrix.sum(1),1.) return trans_matrix
Example 27
def convert_numpy_array_to_line_chart(array, ntype): array = np.sort(array)[::-1] rows = [] previous_count = None for (index,), count in np.ndenumerate(array): if index == 0 or index == len(array)-1: rows.append([index, ntype(count)]) elif previous_count != count: previous_index = rows[-1][0] if previous_index != index - 1: rows.append([index - 1, ntype(previous_count)]) rows.append([index, ntype(count)]) previous_count = count return rows
Example 28
def cal_hist(t1_rep, t2_rep, qnum, hist_size): #qnum = len(t1_rep) mhist = np.zeros((qnum, hist_size), dtype=np.float32) mm = t1_rep.dot(np.transpose(t2_rep)) for (i,j), v in np.ndenumerate(mm): if i >= qnum: break vid = int((v + 1.) / 2. * (hist_size - 1.)) mhist[i][vid] += 1. mhist += 1. mhist = np.log10(mhist) return mhist.flatten()
Example 29
def cal_binsum(t1_rep, t2_rep, qnum, bin_num): mbinsum = np.zeros((qnum, bin_num), dtype=np.float32) mm = t1_rep.dot(np.transpose(t2_rep)) for (i, j), v in np.ndenumerate(mm): if i >= qnum: break vid = int((v + 1.) / 2. * (bin_num - 1.)) mbinsum[i][vid] += v #mhist += 1. # smooth is not needed for computing bin sum #mhist = np.log10(mhist) # not needed for computing bin sum return mbinsum.flatten()
Example 30
def cal_binsum(t1_rep, t2_rep, qnum, bin_num): mbinsum = np.zeros((qnum, bin_num), dtype=np.float32) mm = t1_rep.dot(np.transpose(t2_rep)) for (i, j), v in np.ndenumerate(mm): if i >= qnum: break vid = int((v + 1.) / 2. * (bin_num - 1.)) mbinsum[i][vid] += v #mhist += 1. # smooth is not needed for computing bin sum #mhist = np.log10(mhist) # not needed for computing bin sum return mbinsum.flatten()
Example 31
def assign_node_constraints(snic, axes, face_constraints): """assign node constraints to prescribed node planes Nodes shared on multiple faces have are assigned with the following order of precedence: z, y, x :param snic: sorted node IDs and coordinates from nodes.dyn :param axes: mesh axes [x, y, z] :param face_constraints: list of DOF strings ordered by ((xmin, max), (ymin, ...) (e.g., (('1,1,1,1,1,1' , '0,1,0,0,1,0'),...) :return: bcdict - dictionary of node BC to be written to bc.dyn """ from fem_mesh import extractPlane from numpy import ndenumerate bcdict = {} for axis in range(0, 3): for axlim in range(0, 2): if axlim == 0: axis_limit = axes[axis].min() else: axis_limit = axes[axis].max() planeNodeIDs = extractPlane(snic, axes, (axis, axis_limit)) for i, id in ndenumerate(planeNodeIDs): bcdict[id] = face_constraints[axis][axlim] return bcdict
Example 32
def constrain_sym_pml_nodes(bcdict, snic, axes, pml_elems, edge_constraints): """make sure that all "side" nodes for the PML elements are fully constrained, instead of being assigned the symmetry constraints THIS FUNCTION IS NOT NEEDED!! :param bcdict: :param snic: :param axes: :param pml_elems: :param edge_constraints: :return: bcdict """ from fem_mesh import extractPlane from numpy import ndenumerate # look for x symmetry face for axis in range(0, 2): if edge_constraints[0][axis][0]: axis_limit = axes[axis].min() elif edge_constraints[0][axis][1]: axis_limit = axes[axis].max() if axis_limit is not None: planeNodeIDs = extractPlane(snic, axes, (axis, axis_limit)) pml_node_ids_zmin = planeNodeIDs[:, 0:(pml_elems[2][0] + 1)] pml_node_ids_zmax = planeNodeIDs[:, -(pml_elems[2][1] + 1):] for i, id in ndenumerate(pml_node_ids_zmin): bcdict[id] = "%s" % '1,1,1,1,1,1' for i, id in ndenumerate(pml_node_ids_zmax): bcdict[id] = "%s" % '1,1,1,1,1,1' axis_limit = None return bcdict
Example 33
def create_zdisp(nodeidlist, disp_slice_z_only, zdisp): """create zdisp array from squeezed disp_slice at appropriate index :param nodeidlist: first column of disp_slice with node IDs in row order :param disp_slice_z_only: squeezed disp_slice of just zisp :returns: zdisp -- array of z-disp in rows corresponding to node ID (for fast read access) """ import numpy as np for i, nodeid in np.ndenumerate(nodeidlist): zdisp[nodeid] = disp_slice_z_only[i] return zdisp
Example 34
def test_ndenumerate_crash(self): # Ticket 1140 # Shouldn't crash: list(np.ndenumerate(np.array([[]])))
Example 35
def expand(self, move_probabilities): self.children = {move: MCTSNode(self, move, prob) for move, prob in np.ndenumerate(move_probabilities)} # Pass should always be an option! Say, for example, seki. self.children[None] = MCTSNode(self, None, 0)
Example 36
def load_label(self, idx): """ Load label image as 1 x height x width integer array of label indices. Shift labels so that classes are 0-39 and void is 255 (to ignore it). The leading singleton dimension is required by the loss. """ label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['groundTruth'][0,0][0,0]['SegmentationClass'].astype(np.uint16) for (x,y), value in np.ndenumerate(label): label[x,y] = self.class_map[0][value-1] label = label.astype(np.uint8) label -= 1 # rotate labels label = label[np.newaxis, ...] # pdb.set_trace() return label
Example 37
def load_label(self, idx): """ Load label image as 1 x height x width integer array of label indices. Shift labels so that classes are 0-39 and void is 255 (to ignore it). The leading singleton dimension is required by the loss. """ label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['groundTruth'][0,0][0,0]['SegmentationClass'].astype(np.uint16) for (x,y), value in np.ndenumerate(label): label[x,y] = self.class_map[0][value-1] label = label.astype(np.uint8) label -= 1 # rotate labels label = label[np.newaxis, ...] # pdb.set_trace() return label
Example 38
def load_label(self, idx): """ Load label image as 1 x height x width integer array of label indices. Shift labels so that classes are 0-39 and void is 255 (to ignore it). The leading singleton dimension is required by the loss. """ label = scipy.io.loadmat('{}/segmentation/img_{}.mat'.format(self.nyud_dir, idx))['groundTruth'][0,0][0,0]['SegmentationClass'].astype(np.uint16) for (x,y), value in np.ndenumerate(label): label[x,y] = self.class_map[0][value-1] label = label.astype(np.uint8) label -= 1 # rotate labels label = label[np.newaxis, ...] # pdb.set_trace() return label
Example 39
def build_from_index(self, index, paths, dirs): """ Build index from another index for indices given. """ if isinstance(paths, dict): self._paths = dict((file, paths[file]) for file in index) else: self._paths = dict((file, paths[pos]) for pos, file in np.ndenumerate(index)) self.dirs = dirs return index
Example 40
def test_ndenumerate_crash(self): # Ticket 1140 # Shouldn't crash: list(np.ndenumerate(np.array([[]])))
Example 41
def analyze_false(validData,validDataNumbers,validLabels,model): 'Calculating precision and recall for best model...' predictions = np.squeeze((model.predict(validDataNumbers) > 0.5).astype('int32')) c1_inds = np.where(validLabels == 1)[0] pos_inds = np.where((predictions+validLabels) == 2)[0] #np.squeeze(predictions) == validLabels neg_inds = np.setdiff1d(c1_inds,pos_inds) seq_lengths = np.zeros((validData.shape[0])) for ind,row in np.ndenumerate(validData): seq_lengths[ind] = len(wordpunct_tokenize(row.lower().strip())) mean_true_length = np.mean(seq_lengths[pos_inds]) mean_false_length = np.mean(seq_lengths[neg_inds]) return mean_false_length,mean_true_length
Example 42
def rgb_pixeldata(self): pixels = [np.ndarray(shape=[64, 128], dtype=np.dtype('u1'), order='C'), np.ndarray(shape=[64, 128], dtype=np.dtype('u1'), order='C'), np.ndarray(shape=[64, 128], dtype=np.dtype('u1'), order='C')] for s in range(0, len(pixels)): for (y, x), value in np.ndenumerate(pixels[s]): if s == 0: value = (x * 255) / 128 if s == 1: value = (y * 255) / 64 if s == 2: value = 255 - ((y * 255) / 64) pixels[s].itemset((y, x), value) return pixels
Example 43
def grey_pixeldata(self): pixels = np.ndarray(shape=[64, 128], dtype=np.dtype('f4'), order='C') for (y, x), value in np.ndenumerate(pixels): value = x/128.0 + y/64.0 pixels.itemset((y, x), value) return pixels
Example 44
def argmin_n(m, n): best_values = [] best_index = [] max_value_heap = [] for index, value in np.ndenumerate(m): if len(best_values) == n: if -1 * value < max_value_heap[0][0]: # value is larger than the largest value # and the list is at capacity continue _, pos = heapq.heappop(max_value_heap) best_values[pos] = value best_index[pos] = index heapq.heappush(max_value_heap, (-1 * value, pos)) else: heapq.heappush(max_value_heap, (-1 * value, len(best_values))) best_values.append(value) best_index.append(index) pos, best_values = zip(*sorted(enumerate(best_values), key=lambda e: e[1])) best_index = [best_index[i] for i in pos] return best_index
Example 45
def argmax_n(m, n): best_values = [] best_index = [] max_value_heap = [] for index, value in np.ndenumerate(m): if len(best_values) == n: if value < max_value_heap[0][0]: # value is smaller than the largest value # and the list is at capacity continue _, pos = heapq.heappop(max_value_heap) best_values[pos] = value best_index[pos] = index heapq.heappush(max_value_heap, (value, pos)) else: heapq.heappush(max_value_heap, (value, len(best_values))) best_values.append(value) best_index.append(index) pos, best_values = zip( *sorted(enumerate(best_values), key=lambda e: e[1], reverse=True)) best_index = [best_index[i] for i in pos] return best_index
Example 46
def __init__(self, tensors, up_label="up", right_label="right", down_label="down", left_label="left", copy_data=True): self.up_label = up_label self.right_label = right_label self.down_label = down_label self.left_label = left_label if copy_data: # Creates copies of tensors in memory copied_tensors = [] for row in tensors: copied_tensors.append([x.copy() for x in row]) self.data = np.array(copied_tensors) else: # This will not create copies of tensors in memory # (just link to originals) self.data = np.array(tensors) # Every tensor will have four indices corresponding to # "left", "right" and "up", "down" labels. for i, x in np.ndenumerate(self.data): if left_label not in x.labels: x.add_dummy_index(left_label) if right_label not in x.labels: x.add_dummy_index(right_label) if up_label not in x.labels: x.add_dummy_index(up_label) if down_label not in x.labels: x.add_dummy_index(down_label) # Add container emulation
Example 47
def getCellParameters(self, array, fn=np.mean): out = np.arange(len(self.cells), dtype=float).reshape(self.opts['grid']) s = array.shape for (i, j), n in np.ndenumerate(out): m = self.cells[int(n)].getMask(s) out[i, j] = fn(array[m]) return out
Example 48
def Find_HighlightedEdges(self,weight = 0): self.ThresholdData = np.copy(self.data) # low_values_indices = self.ThresholdData < weight # Where values are low # self.ThresholdData[low_values_indices] = 0 # graterindices = [ (i,j) for i,j in np.ndenumerate(self.ThresholdData) if any(i > j) ] # self.ThresholdData[graterindices[:1]] = 0 # self.ThresholdData = np.tril(self.ThresholdData) # print self.ThresholdData, "is the data same??" """ test 2 highlighted edges there """ # np.savetxt('test2.txt', self.ThresholdData, delimiter=',', fmt='%1.4e') self.g = nx.from_numpy_matrix(self.ThresholdData)
Example 49
def finite_differences(func, inputs, func_output_shape=(), epsilon=1e-5): """ Computes gradients via finite differences. derivative = (func(x+epsilon) - func(x-epsilon)) / (2*epsilon) Args: func: Function to compute gradient of. Inputs and outputs can be arbitrary dimension. inputs: Vector value to compute gradient at. func_output_shape: Shape of the output of func. Default is empty-tuple, which works for scalar-valued functions. epsilon: Difference to use for computing gradient. Returns: Gradient vector of each dimension of func with respect to each dimension of input. """ gradient = np.zeros(inputs.shape+func_output_shape) for idx, _ in np.ndenumerate(inputs): test_input = np.copy(inputs) test_input[idx] += epsilon obj_d1 = func(test_input) assert obj_d1.shape == func_output_shape test_input = np.copy(inputs) test_input[idx] -= epsilon obj_d2 = func(test_input) assert obj_d2.shape == func_output_shape diff = (obj_d1 - obj_d2) / (2 * epsilon) gradient[idx] += diff return gradient
Example 50
def __init__(self, row, column): self.rewards = np.full((row, column), -0.2) self.states = np.ones((row, column), dtype=np.int) self.states[1, 1] = -1 self.index_list = [index for index, x in np.ndenumerate(self.states) if x > 0] self._init_next_state_table() self.rewards[0, column - 1] = 1 self.rewards[0, 0] = 1 self.rewards[1, column - 1] = -1 self.terminal = [(0, column - 1), (0, 0)]