Python numpy.fromfile() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def load_raw(filename, volsize):
    """ inspired by mhd_utils from github"""
    dim = 3
    element_channels = 1
    np_type = np.ubyte

    arr = list(volsize)
    volume = np.prod(arr[0:dim - 1])

    shape = (arr[dim - 1], volume, element_channels)
    with open(filename,'rb') as fid:
        data = np.fromfile(fid, count=np.prod(shape),dtype = np_type)
    data.shape = shape

    arr.reverse()
    data = data.reshape(arr)
    
    return data 

Example 2

def read_gnt_in_directory(gnt_dirpath):
    def samples(f):
        header_size = 10

        # read samples from f until no bytes remaining
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break

            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            assert header_size + width*height == sample_size

            bitmap = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield bitmap, tagcode

    for file_name in os.listdir(gnt_dirpath):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dirpath, file_name)
            with open(file_path, 'rb') as f:
                for bitmap, tagcode in samples(f):
                    yield bitmap, tagcode 

Example 3

def read_flow(path, filename):
    flowdata = None
    with open(path + filename + '.flo') as f:
        # Valid .flo file checker
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print 'Magic number incorrect. Invalid .flo file'
        else:
            # Reshape data into 3D array (columns, rows, bands)
            w = int(np.fromfile(f, np.int32, count=1))
            h = int(np.fromfile(f, np.int32, count=1))
            #print 'Reading {}.flo with shape: ({}, {}, 2)'.format(filename, h, w)
            flowdata = np.fromfile(f, np.float32, count=2*w*h)

            # NOTE: numpy shape(h, w, ch) is opposite to image shape(w, h, ch)
            flowdata = np.reshape(flowdata, (h, w, 2))

    return flowdata 

Example 4

def _read(self, stream, text, byte_order):
        '''
        Read the actual data from a PLY file.

        '''
        if text:
            self._read_txt(stream)
        else:
            if self._have_list:
                # There are list properties, so a simple load is
                # impossible.
                self._read_bin(stream, byte_order)
            else:
                # There are no list properties, so loading the data is
                # much more straightforward.
                self._data = _np.fromfile(stream,
                                          self.dtype(byte_order),
                                          self.count)

        if len(self._data) < self.count:
            k = len(self._data)
            del self._data
            raise PlyParseError("early end-of-file", self, k)

        self._check_sanity() 

Example 5

def _read(self, stream, text, byte_order):
        '''
        Read the actual data from a PLY file.

        '''
        if self._have_list:
            # There are list properties, so a simple load is
            # impossible.
            if text:
                self._read_txt(stream)
            else:
                self._read_bin(stream, byte_order)
        else:
            # There are no list properties, so loading the data is
            # much more straightforward.
            if text:
                self.data = _np.loadtxt(
                    _islice(iter(stream.readline, ''), self.count),
                    self.dtype())
            else:
                self.data = _np.fromfile(
                    stream, self.dtype(byte_order), self.count) 

Example 6

def __read_annotations_old(self):
        """
        Read the stimulus grid properties.

        Returns a dictionary containing the parameter names as keys and the
        parameter values as values.

        ------------------------------------------------
        The returned objects must be added to the Block.

        This reads an old version of the format that does not store paramater
        names, so placeholder names are created instead.

        ID: 29099
        """

        # int16 * 14 -- an array of parameter values
        values = np.fromfile(self._fsrc, dtype=np.int16, count=14)

        # create dummy names and combine them with the values in a dict
        # the dict will be added to the annotations
        params = ['param%s' % i for i in range(len(values))]
        annotations = dict(zip(params, values))

        return annotations 

Example 7

def __read_spike_fixed(self, numpts=40):
        """
        Read a spike with a fixed waveform length (40 time bins)

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29079
        """

        # float32 -- spike time stamp in ms since start of SpikeTrain
        time = np.fromfile(self._fsrc, dtype=np.float32, count=1)

        # int8 * 40 -- spike shape -- use numpts for spike_var
        waveform = np.fromfile(self._fsrc, dtype=np.int8,
                               count=numpts).reshape(1, 1, numpts)

        # uint8 -- point of return to noise
        trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)

        return time, waveform, trig2 

Example 8

def __read_id(self):
        '''
        Read the next ID number and do the appropriate task with it.

        Returns nothing.
        '''
        try:
            # float32 -- ID of the first data sequence
            objid = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]
        except IndexError:
            # if we have a previous segment, save it
            self.__save_segment()

            # if there are no more Segments, return
            return False

        if objid == -2:
            self.__read_condition()
        elif objid == -1:
            self.__read_segment()
        else:
            self.__spiketimes.append(objid)
        return True 

Example 9

def __read_condition(self):
        '''
        Read the parameter values for a single stimulus condition.

        Returns nothing.
        '''
        # float32 -- SpikeTrain length in ms
        self.__t_stop = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]

        # float32 -- number of stimulus parameters
        numelements = int(np.fromfile(self._fsrc, dtype=np.float32,
                                      count=1)[0])

        # [float32] * numelements -- stimulus parameter values
        paramvals = np.fromfile(self._fsrc, dtype=np.float32,
                                count=numelements).tolist()

        # organize the parameers into a dictionary with arbitrary names
        paramnames = ['Param%s' % i for i in range(len(paramvals))]
        self.__params = dict(zip(paramnames, paramvals)) 

Example 10

def __extract_nsx_file_spec(self, nsx_nb):
        """
        Extract file specification from an .nsx file.
        """
        filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

        # Header structure of files specification 2.2 and higher. For files 2.1
        # and lower, the entries ver_major and ver_minor are not supported.
        dt0 = [
            ('file_id', 'S8'),
            ('ver_major', 'uint8'),
            ('ver_minor', 'uint8')]

        nsx_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
        if nsx_file_id['file_id'].decode() == 'NEURALSG':
            spec = '2.1'
        elif nsx_file_id['file_id'].decode() == 'NEURALCD':
            spec = '{0}.{1}'.format(
                nsx_file_id['ver_major'], nsx_file_id['ver_minor'])
        else:
            raise IOError('Unsupported NSX file type.')

        return spec 

Example 11

def __extract_nev_file_spec(self):
        """
        Extract file specification from an .nsx file
        """
        filename = '.'.join([self._filenames['nsx'], 'nev'])
        # Header structure of files specification 2.2 and higher. For files 2.1
        # and lower, the entries ver_major and ver_minor are not supported.
        dt0 = [
            ('file_id', 'S8'),
            ('ver_major', 'uint8'),
            ('ver_minor', 'uint8')]

        nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
        if nev_file_id['file_id'].decode() == 'NEURALEV':
            spec = '{0}.{1}'.format(
                nev_file_id['ver_major'], nev_file_id['ver_minor'])
        else:
            raise IOError('NEV file type {0} is not supported'.format(
                nev_file_id['file_id']))

        return spec 

Example 12

def __read_annotations_old(self):
        """
        Read the stimulus grid properties.

        Returns a dictionary containing the parameter names as keys and the
        parameter values as values.

        ------------------------------------------------
        The returned objects must be added to the Block.

        This reads an old version of the format that does not store paramater
        names, so placeholder names are created instead.

        ID: 29099
        """

        # int16 * 14 -- an array of parameter values
        values = np.fromfile(self._fsrc, dtype=np.int16, count=14)

        # create dummy names and combine them with the values in a dict
        # the dict will be added to the annotations
        params = ['param%s' % i for i in range(len(values))]
        annotations = dict(zip(params, values))

        return annotations 

Example 13

def __read_spike_fixed(self, numpts=40):
        """
        Read a spike with a fixed waveform length (40 time bins)

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29079
        """

        # float32 -- spike time stamp in ms since start of SpikeTrain
        time = np.fromfile(self._fsrc, dtype=np.float32, count=1)

        # int8 * 40 -- spike shape -- use numpts for spike_var
        waveform = np.fromfile(self._fsrc, dtype=np.int8,
                               count=numpts).reshape(1, 1, numpts)

        # uint8 -- point of return to noise
        trig2 = np.fromfile(self._fsrc, dtype=np.uint8, count=1)

        return time, waveform, trig2 

Example 14

def __read_spike_var(self):
        """
        Read a spike with a variable waveform length

        -------------------------------------------
        Returns the time, waveform and trig2 value.

        The returned objects must be converted to a SpikeTrain then
        added to the Block.

        ID: 29115
        """

        # uint8 -- number of points in spike shape
        numpts = np.fromfile(self._fsrc, dtype=np.uint8, count=1)[0]

        # spike_fixed is the same as spike_var if you don't read the numpts
        # byte and set numpts = 40
        return self.__read_spike_fixed(numpts) 

Example 15

def __read_condition(self):
        '''
        Read the parameter values for a single stimulus condition.

        Returns nothing.
        '''
        # float32 -- SpikeTrain length in ms
        self.__t_stop = np.fromfile(self._fsrc, dtype=np.float32, count=1)[0]

        # float32 -- number of stimulus parameters
        numelements = int(np.fromfile(self._fsrc, dtype=np.float32,
                                      count=1)[0])

        # [float32] * numelements -- stimulus parameter values
        paramvals = np.fromfile(self._fsrc, dtype=np.float32,
                                count=numelements).tolist()

        # organize the parameers into a dictionary with arbitrary names
        paramnames = ['Param%s' % i for i in range(len(paramvals))]
        self.__params = dict(zip(paramnames, paramvals)) 

Example 16

def __extract_nsx_file_spec(self, nsx_nb):
        """
        Extract file specification from an .nsx file.
        """
        filename = '.'.join([self._filenames['nsx'], 'ns%i' % nsx_nb])

        # Header structure of files specification 2.2 and higher. For files 2.1
        # and lower, the entries ver_major and ver_minor are not supported.
        dt0 = [
            ('file_id', 'S8'),
            ('ver_major', 'uint8'),
            ('ver_minor', 'uint8')]

        nsx_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
        if nsx_file_id['file_id'].decode() == 'NEURALSG':
            spec = '2.1'
        elif nsx_file_id['file_id'].decode() == 'NEURALCD':
            spec = '{0}.{1}'.format(
                nsx_file_id['ver_major'], nsx_file_id['ver_minor'])
        else:
            raise IOError('Unsupported NSX file type.')

        return spec 

Example 17

def __extract_nev_file_spec(self):
        """
        Extract file specification from an .nsx file
        """
        filename = '.'.join([self._filenames['nsx'], 'nev'])
        # Header structure of files specification 2.2 and higher. For files 2.1
        # and lower, the entries ver_major and ver_minor are not supported.
        dt0 = [
            ('file_id', 'S8'),
            ('ver_major', 'uint8'),
            ('ver_minor', 'uint8')]

        nev_file_id = np.fromfile(filename, count=1, dtype=dt0)[0]
        if nev_file_id['file_id'].decode() == 'NEURALEV':
            spec = '{0}.{1}'.format(
                nev_file_id['ver_major'], nev_file_id['ver_minor'])
        else:
            raise IOError('NEV file type {0} is not supported'.format(
                nev_file_id['file_id']))

        return spec 

Example 18

def readheader(self):
        self.fh.seek(0,0)
        spam = self.fh.read(12)
        self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \
                       unpack(">IIHH", spam)
        # Get coefficients for compressed data
        if self.parmKind & _C:
            self.dtype = 'h'
            self.veclen = self.sampSize / 2
            if self.parmKind & 0x3f == IREFC:
                self.A = 32767
                self.B = 0
            else:
                self.A = numpy.fromfile(self.fh, 'f', self.veclen)
                self.B = numpy.fromfile(self.fh, 'f', self.veclen)
                if self.swap:
                    self.A = self.A.byteswap()
                    self.B = self.B.byteswap()
        else:
            self.dtype = 'f'    
            self.veclen = self.sampSize / 4
        self.hdrlen = self.fh.tell() 

Example 19

def test_silence_frame_removal_given_hts_labels():
    qs_file_name = join(DATA_DIR, "questions-radio_dnn_416.hed")
    binary_dict, continuous_dict = hts.load_question_set(qs_file_name)

    input_state_label = join(DATA_DIR, "label_state_align", "arctic_a0001.lab")
    labels = hts.load(input_state_label)
    features = fe.linguistic_features(labels,
                                      binary_dict,
                                      continuous_dict,
                                      add_frame_features=True,
                                      subphone_features="full"
                                      )

    # Remove silence frames
    indices = labels.silence_frame_indices()
    features = np.delete(features, indices, axis=0)

    y = np.fromfile(join(DATA_DIR, "nn_no_silence_lab_425", "arctic_a0001.lab"),
                    dtype=np.float32).reshape(-1, features.shape[-1])
    assert features.shape == y.shape
    assert np.allclose(features, y)


# Make sure we can get same results with Merlin 

Example 20

def test_linguistic_features_for_acoustic_model():
    qs_file_name = join(DATA_DIR, "questions-radio_dnn_416.hed")
    binary_dict, continuous_dict = hts.load_question_set(qs_file_name)

    # Linguistic features
    # To train acoustic model paired with linguistic features,
    # we need frame-level linguistic feature representation.
    input_state_label = join(DATA_DIR, "label_state_align", "arctic_a0001.lab")
    labels = hts.load(input_state_label)
    assert labels.is_state_alignment_label()
    x = fe.linguistic_features(labels,
                               binary_dict,
                               continuous_dict,
                               add_frame_features=True,
                               subphone_features="full"
                               )
    y = np.fromfile(join(DATA_DIR, "binary_label_425",
                         "arctic_a0001.lab"), dtype=np.float32).reshape(-1, x.shape[-1])
    assert np.allclose(x, y) 

Example 21

def read_array(self, dtype, count=-1, sep=""):
        """Return numpy array from file.

        Work around numpy issue #2230, "numpy.fromfile does not accept
        StringIO object" https://github.com/numpy/numpy/issues/2230.

        """
        try:
            return numpy.fromfile(self._fh, dtype, count, sep)
        except IOError:
            if count < 0:
                size = self._size
            else:
                size = count * numpy.dtype(dtype).itemsize
            data = self._fh.read(size)
            return numpy.fromstring(data, dtype, count, sep) 

Example 22

def test_file_position_after_fromfile(self):
        # gh-4118
        sizes = [io.DEFAULT_BUFFER_SIZE//8,
                 io.DEFAULT_BUFFER_SIZE,
                 io.DEFAULT_BUFFER_SIZE*8]

        for size in sizes:
            f = open(self.filename, 'wb')
            f.seek(size-1)
            f.write(b'\0')
            f.close()

            for mode in ['rb', 'r+b']:
                err_msg = "%d %s" % (size, mode)

                f = open(self.filename, mode)
                f.read(2)
                np.fromfile(f, dtype=np.float64, count=1)
                pos = f.tell()
                f.close()
                assert_equal(pos, 10, err_msg=err_msg) 

Example 23

def test_big_binary(self):
        """Test workarounds for 32-bit limited fwrite, fseek, and ftell
        calls in windows. These normally would hang doing something like this.
        See http://projects.scipy.org/numpy/ticket/1660"""
        if sys.platform != 'win32':
            return
        try:
            # before workarounds, only up to 2**32-1 worked
            fourgbplus = 2**32 + 2**16
            testbytes = np.arange(8, dtype=np.int8)
            n = len(testbytes)
            flike = tempfile.NamedTemporaryFile()
            f = flike.file
            np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f)
            flike.seek(0)
            a = np.fromfile(f, dtype=np.int8)
            flike.close()
            assert_(len(a) == fourgbplus)
            # check only start and end for speed:
            assert_((a[:n] == testbytes).all())
            assert_((a[-n:] == testbytes).all())
        except (MemoryError, ValueError):
            pass 

Example 24

def load_mnist(data_dir):
    fd = open(os.path.join(data_dir,'train-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    trX = loaded[16:].reshape((60000,np.prod(input_shape))).astype(float) / 255

    fd = open(os.path.join(data_dir,'train-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    trY = loaded[8:].reshape((60000))

    fd = open(os.path.join(data_dir,'t10k-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    teX = loaded[16:].reshape((10000,np.prod(input_shape))).astype(float) / 255

    fd = open(os.path.join(data_dir,'t10k-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd,dtype=np.uint8)
    teY = loaded[8:].reshape((10000))
    
    trY = np.asarray(trY)
    teY = np.asarray(teY)

    return trX, teX, trY, teY 

Example 25

def load_pfm(filepath, reverse = 1):
    file = open(filepath, 'rb')
    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    color = (header == 'PF')

    width, height = map(int, file.readline().strip().split(' '))
    scale = float(file.readline().rstrip())
    endian = '<' if(scale < 0) else '>'
    scale = abs(scale)

    rawdata = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)
    file.close()

    if(color):  
        return rawdata.reshape(shape).astype(np.float32)[:,:,::-1]
    else:
        return rawdata.reshape(shape).astype(np.float32) 

Example 26

def mnist():
    fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    trX = loaded[16:].reshape((60000, 28 * 28)).astype(float)

    fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    trY = loaded[8:].reshape((60000))

    fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    teX = loaded[16:].reshape((10000, 28 * 28)).astype(float)

    fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))
    loaded = np.fromfile(file=fd, dtype=np.uint8)
    teY = loaded[8:].reshape((10000))
    
    trY = np.asarray(trY)
    teY = np.asarray(teY)

    return trX, teX, trY, teY 

Example 27

def _holes_of_line(self, line=0):
        try:
            amount_of_holes, hole_id = self.hole_registry[line]

            for i in range(amount_of_holes):
                self.hole_coord_amount.seek(2 * hole_id)
                nr_of_values = unpack(b'<H', self.hole_coord_amount.read(2))[0]

                self.hole_adr2data.seek(4 * hole_id)
                self.hole_data.seek(unpack(b'<I', self.hole_adr2data.read(4))[0])

                yield array([fromfile(self.hole_data, dtype='<i4', count=nr_of_values),
                             fromfile(self.hole_data, dtype='<i4', count=nr_of_values)])
                hole_id += 1

        except KeyError:
            return 

Example 28

def readFile(self, filename):
        '''
        readFile(filename)
        
        Reads a GDSII file and populate the library object
        
        Parameters
        ----------
        filename : string
            Name of GDSII file
        '''
        if not isinstance(filename,str):
            raise TypeError('GDSII_Library.readFile() : The filename must be a string')
        if filename[-4:].lower() == '.gds':
            filename = filename[:-4]
        f = open(filename + '.gds','rb')
        record = np.fromfile(f, dtype=np.uint8)
        f.close()
        self.readRecord(record) 

Example 29

def create_bfcr(filename):
    """Creates a BFCR instance for a given file.

    This helper function loads a label file and its corrosponding mgc file and
    creates a bfcr file from them. The paths of both files are determined
    automatically.

    :params filename: filename from which the BFCR instaces are created
    :returns: an instance of the BFCR class
    """
    filename = os.path.splitext(os.path.basename(filename))[0]

    label_file = LABEL_DIR + filename + '.lab'
    mgc_file = MGC_DIR + filename + '.mgc'

    mgc_matrix = np.fromfile(mgc_file, dtype=np.float32).reshape(-1, MGCORD+1)
    bfcr = BFCR(label_file)
    bfcr.encode_feature(mgc_matrix, 'mgc', NUM_BASES)
    return bfcr 

Example 30

def _load_original_matrix(self):
        """Loades the original mgc matrix for the test file.

        This helper method loads the original matrix from the *.mgc file and
        matrix for the test file and also computes the staring times of the
        different phones.

        :returns: the original mgc matrix
        :returns: starting times of the phones
        """
        mgc_matrix = np.fromfile(MGC_DIR + self._filename + '.mgc', dtype=np.float32).reshape(-1, MGCORD+1)

        label = Label(LABEL_DIR + self._filename + '.lab')
        step_size = mgc_matrix.shape[0]/label.last_phone_end
        phone_starts = [int(round(p[1]*step_size)) for p in label.cur_phones_additions()]

        return mgc_matrix, phone_starts 

Example 31

def parse(self):
        fname = self.fname.text()

        if os.path.isfile(fname):
            f = open(fname, "r")
        else:
            sys.stderr.write("Unable to open %s\n"%fname)
            return

        self.vol = np.fromfile(f, dtype='f8')
        self.size = int(np.ceil(np.power(len(self.vol), 1./3.)))
        self.vol = self.vol.reshape(self.size, self.size, self.size)
        self.center = self.size/2
        if not self.image_exists:
            self.layer_slider.setRange(0, self.size-1)
            self.layernum.setMaximum(self.size-1)
            self.layer_slider.setValue(self.center)
            self.layerslider_moved(self.center)

        self.old_fname = fname 

Example 32

def _parse_headers(self):
        self.num_data_list = []
        self.ones_accum_list = []
        self.multi_accum_list = []
        self.num_pix = []
        
        for i, photons_file in enumerate(self.photons_list):
            with open(photons_file, 'rb') as f:
                num_data = np.fromfile(f, dtype='i4', count=1)[0]
                self.num_pix.append(np.fromfile(f, dtype='i4', count=1)[0])
                if self.num_pix[i] != len(self.geom_list[i].x):
                    sys.stderr.write('Warning: num_pix for %s is different (%d vs %d)\n' % (photons_file, self.num_pix[i], len(self.geom_list[i].x)))
                f.seek(1024, 0)
                ones = np.fromfile(f, dtype='i4', count=num_data)
                multi = np.fromfile(f, dtype='i4', count=num_data)
            self.num_data_list.append(num_data)
            self.ones_accum_list.append(np.cumsum(ones))
            self.multi_accum_list.append(np.cumsum(multi))
        
        self.num_data_list = np.cumsum(self.num_data_list)
        self.num_frames = self.num_data_list[-1] 

Example 33

def get_fiedler_julia(mat, julia_path, julia_fiedler_script):

    # Construct Laplacian
    (iis, jjs, vvs) = find(mat)
    n = mat.shape[0]
    # add a random number to the filename to avoid inconsistent writes and reads with multiprocessing
    randn = randrange(1000)

    # write to csv
    itempf = 'mat_coords_iis_%d_%d.csv' % (n, randn)
    iis.tofile(itempf, sep=',')
    jtempf = 'mat_coords_jjs_%d_%d.csv' % (n, randn)
    jjs.tofile(jtempf, sep=',')
    vtempf = 'mat_data.csv_%d_%d' % (n, randn)
    vvs.tofile(vtempf, sep=',')

    outf = 'temp_fidvec_%d_%d.csv' % (n, randn)
    # call julia
    cmd = [julia_path, julia_fiedler_script, itempf, jtempf, vtempf, outf]
    subprocess.call(cmd)

    # remove temporary files
    os.remove(itempf)
    os.remove(jtempf)
    os.remove(vtempf)

    # check output looks OK and return permutation
    if os.path.exists(outf):
        myperm = np.fromfile(outf, dtype=int, sep=',')
        myperm = myperm - 1
        os.remove(outf)
        if (len(myperm) == mat.shape[0]):
            return myperm
        else:
            return np.arange(n)
    # output identity permutation if something went wrong
    else:
        return np.arange(n) 

Example 34

def read_data(self, start=None, end=None):
        """read data from file and store it locally"""
        nframe = self._find_nframe_from_file()
        seek_to_data(self.file_object)
        read_start = 0
        end_read = nframe * self.nifs * self.nchans
        if start is not None:
            if start < 0:
                read_start = (nframe + start) * self.nifs * self.nchans
            elif start >= 0:
                read_start = start * self.nifs * self.nchans
        if end is not None:
            if end < 0:
                end_read = (nframe + end) * self.nifs * self.nchans
            elif end >= 0:
                end_read = end * self.nifs * self.nchans
        self.file_object.seek(read_start, os.SEEK_CUR)
        nbytes_to_read = end_read - read_start
        data = np.fromfile(self.file_object, count=nbytes_to_read, dtype=self.dtype)
        nframe = data.size // self.nifs // self.nchans
        data = data.reshape((nframe, self.nifs, self.nchans))
        if self.nbits < 8:
            data = unpack(data, self.nbits)
        self.data = data
        return self.data 

Example 35

def readheader(self):
        self.fh.seek(0,0)
        spam = self.fh.read(12)
        self.nSamples, self.sampPeriod, self.sampSize, self.parmKind = \
                       unpack(">IIHH", spam)
        # Get coefficients for compressed data
        if self.parmKind & _C:
            self.dtype = 'h'
            self.veclen = self.sampSize / 2
            if self.parmKind & 0x3f == IREFC:
                self.A = 32767
                self.B = 0
            else:
                self.A = numpy.fromfile(self.fh, 'f', self.veclen)
                self.B = numpy.fromfile(self.fh, 'f', self.veclen)
                if self.swap:
                    self.A = self.A.byteswap()
                    self.B = self.B.byteswap()
        else:
            self.dtype = 'f'
            self.veclen = self.sampSize / 4
        self.hdrlen = self.fh.tell()
        self.veclen = int(self.veclen) 

Example 36

def read_from_gnt_dir(gnt_dir=train_data_dir):
    def one_file(f):
        header_size = 10
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break
            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            if header_size + width*height != sample_size:
                break
            image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield image, tagcode
 
    for file_name in os.listdir(gnt_dir):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dir, file_name)
            with open(file_path, 'rb') as f:
                for image, tagcode in one_file(f):
                    yield image, tagcode 

Example 37

def read_from_gnt_dir(gnt_dir=train_data_dir):
    def one_file(f):
        header_size = 10
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break
            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            if header_size + width*height != sample_size:
                break
            image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield image, tagcode
    for file_name in os.listdir(gnt_dir):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dir, file_name)
            with open(file_path, 'rb') as f:
                for image, tagcode in one_file(f):
                    yield image, tagcode 

Example 38

def read_from_gnt_dir(gnt_dir=train_data_dir):
    def one_file(f):
        header_size = 10
        while True:
            header = np.fromfile(f, dtype='uint8', count=header_size)
            if not header.size: break
            sample_size = header[0] + (header[1]<<8) + (header[2]<<16) + (header[3]<<24)
            tagcode = header[5] + (header[4]<<8)
            width = header[6] + (header[7]<<8)
            height = header[8] + (header[9]<<8)
            if header_size + width*height != sample_size:
                break
            image = np.fromfile(f, dtype='uint8', count=width*height).reshape((height, width))
            yield image, tagcode
 
    for file_name in os.listdir(gnt_dir):
        if file_name.endswith('.gnt'):
            file_path = os.path.join(gnt_dir, file_name)
            with open(file_path, 'rb') as f:
                for image, tagcode in one_file(f):
                    yield image, tagcode
 
# ????? 

Example 39

def get_embedding():
    embedding_path = os.path.join(FLAGS.datasets_dir, "wordVectors.txt")
    if not tf.gfile.Exists(embedding_path):
        raise ValueError("embedding file not exists")
    # embedding = np.fromfile(embedding_path, sep=' ')
    # print("embedding size:", embedding.shape)
    # print("embedding size:", embedding.dtype)
    # embedding.reshape(100232, 50)
    # print("embedding size:", embedding.shape)
    data = np.fromfile(embedding_path, dtype=np.float32, sep=' ')
    print("shape:", data.shape)
    print("ndim:", data.ndim)
    print("dtype:", data.dtype)
    print(data)
    print("reshape vocabulary")
    d = data.reshape((-1, 50))
    print("shape:", d.shape)
    print("ndim:", d.ndim)
    print("dtype:", d.dtype)
    print(d)
    return d 

Example 40

def plot_conf_mat(densmap_name):
    fig = plt.figure(figsize = (20,20))
    plt.clf()
    ax = fig.add_subplot(111)
    #ax.set_aspect(1)
    densmap = np.fromfile(densmap_name, np.float32)
    densmap = densmap.reshape(227, 227)
    densmap *= 100
    densmap[densmap > 1] = 1
    res = ax.imshow(densmap, cmap = plt.cm.jet,
            interpolation = 'nearest')

    plt.savefig('density.jpg')
    img = cv2.imread("density.jpg")
    img = cv2.resize(img, (227,227))
    cv2.imshow("i", img)#
    cv2.waitKey(0)
    #plt.show() 

Example 41

def load_mnist(self):

        data_dir = os.path.join("./data", "mnist")

        fd = open(os.path.join(data_dir, 'train-images-idx3-ubyte'))
        loaded = np.fromfile(file=fd , dtype=np.uint8)
        trX = loaded[16:].reshape((60000, 28 , 28 ,  1)).astype(np.float)

        fd = open(os.path.join(data_dir, 'train-labels-idx1-ubyte'))
        loaded = np.fromfile(file=fd, dtype=np.uint8)
        trY = loaded[8:].reshape((60000)).astype(np.float)

        fd = open(os.path.join(data_dir, 't10k-images-idx3-ubyte'))
        loaded = np.fromfile(file=fd, dtype=np.uint8)
        teX = loaded[16:].reshape((10000, 28 , 28 , 1)).astype(np.float)

        fd = open(os.path.join(data_dir, 't10k-labels-idx1-ubyte'))
        loaded = np.fromfile(file=fd, dtype=np.uint8)
        teY = loaded[8:].reshape((10000)).astype(np.float)

        trY = np.asarray(trY)
        teY = np.asarray(teY)

        X = np.concatenate((trX, teX), axis=0)
        y = np.concatenate((trY, teY), axis=0)

        seed = 547
        np.random.seed(seed)
        np.random.shuffle(X)
        np.random.seed(seed)
        np.random.shuffle(y)

        #convert label to one-hot

        y_vec = np.zeros((len(y), 10), dtype=np.float)
        for i, label in enumerate(y):
            y_vec[i, int(y[i])] = 1.0

        return X / 255. , y_vec 

Example 42

def unpack(stream):
    base = stream.tell()
    header = Header.unpack(stream)

    influence_groups = [None]*header.influence_group_count
    inverse_bind_matrices = None

    stream.seek(base + header.influence_count_offset)
    for i in range(header.influence_group_count):
        influence_count = uint8.unpack(stream)
        influence_groups[i] = [Influence(None,None) for _ in range(influence_count)]

    stream.seek(base + header.index_offset)
    for influence_group in influence_groups:
        for influence in influence_group:
            influence.index = uint16.unpack(stream)

    stream.seek(base + header.weight_offset)
    for influence_group in influence_groups:
        for influence in influence_group:
            influence.weight = float32.unpack(stream)

    if header.inverse_bind_matrix_offset != 0:
        stream.seek(base + header.inverse_bind_matrix_offset)
        element_type = numpy.dtype((numpy.float32,(3,4))).newbyteorder('>')
        element_count = (header.section_size - header.inverse_bind_matrix_offset)//element_type.itemsize
        inverse_bind_matrices = numpy.fromfile(stream,element_type,element_count)

    stream.seek(base + header.section_size)
    return influence_groups,inverse_bind_matrices 

Example 43

def unpack_array(stream,attribute_format,size):
    if attribute_format.attribute == gx.VA_POS:
        component_type = gx.ComponentType(attribute_format.component_type)
        component_count = gx.PositionComponentCount(attribute_format.component_count)
        array_type = Array
    elif attribute_format.attribute == gx.VA_NRM:
        component_type = gx.ComponentType(attribute_format.component_type)
        component_count = gx.NormalComponentCount(attribute_format.component_count)
        array_type = Array
    elif attribute_format.attribute in gx.VA_CLR:
        component_type = gx.ColorComponentType(attribute_format.component_type)
        component_count = gx.ColorComponentCount(attribute_format.component_count)
        array_type = ColorArray
    elif attribute_format.attribute in gx.VA_TEX:
        component_type = gx.ComponentType(attribute_format.component_type)
        component_count = gx.TexCoordComponentCount(attribute_format.component_count)
        array_type = Array
    else:
        raise FormatError('invalid vertex attribute')

    element_type = array_type.create_element_type(component_type,component_count)
    element_count = size//element_type.itemsize
    array = numpy.fromfile(stream,element_type,element_count).view(array_type)
    array.attribute = attribute_format.attribute
    array.component_type = component_type
    array.component_count = component_count
    array.scale_exponent = attribute_format.scale_exponent
    return array 

Example 44

def _read_bin(self, stream, byte_order):
        '''
        Read data from a binary stream.  Raise StopIteration if the
        property could not be read.

        '''
        try:
            return _np.fromfile(stream, self.dtype(byte_order), 1)[0]
        except IndexError:
            raise StopIteration 

Example 45

def _read_bin(self, stream, byte_order):
        (len_t, val_t) = self.list_dtype(byte_order)

        try:
            n = _np.fromfile(stream, len_t, 1)[0]
        except IndexError:
            raise StopIteration

        data = _np.fromfile(stream, val_t, n)
        if len(data) < n:
            raise StopIteration

        return data 

Example 46

def convert_f0(f0, src, trg):
    mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32)
    mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32)
    lf0 = tf.where(f0 > 1., tf.log(f0), f0)
    lf0 = tf.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0)
    lf0 = tf.where(lf0 > 1., tf.exp(lf0), lf0)
    return lf0 

Example 47

def test():
    # ==== Test: batch mixer (conclusion: capacity should be larger to make sure good mixing) ====
    x, y = read('./dataset/vcc2016/bin/*/*/1*001.bin', 32, min_after_dequeue=1024, capacity=2048)
    sv = tf.train.Supervisor()
    with sv.managed_session() as sess:
        for _ in range(200):
            x_, y_ = sess.run([x, y])
            print(y_)


    # ===== Read binary ====
    features = read_whole_features('./dataset/vcc2016/bin/Training Set/SF1/*001.bin')

    sv = tf.train.Supervisor()
    with sv.managed_session() as sess:
        features = sess.run(features)

    y = pw2wav(features)
    sf.write('test1.wav', y, 16000)  # TODO fs should be specified externally.


    # ==== Direct read =====
    f = './dataset/vcc2016/bin/Training Set/SF1/100001.bin'
    features = np.fromfile(f, np.float32)
    features = np.reshape(features, [-1, 513*2 + 1 + 1 + 1]) # f0, en, spk

    y = pw2wav(features)
    sf.write('test2.wav', y, 16000) 

Example 48

def read_float64_as_float32(filename):
    x = np.fromfile(filename, np.float64)
    return x.astype(np.float32) 

Example 49

def main():
    ''' NOTE: The input is rescaled to [-1, 1] '''

    dirs = validate_log_dirs(args)
    tf.gfile.MakeDirs(dirs['logdir'])

    with open(args.architecture) as f:
        arch = json.load(f)

    with open(os.path.join(dirs['logdir'], args.architecture), 'w') as f:
        json.dump(arch, f, indent=4)

    normalizer = Tanhize(
        xmax=np.fromfile('./etc/xmax.npf'),
        xmin=np.fromfile('./etc/xmin.npf'),
    )

    image, label = read(
        file_pattern=arch['training']['datadir'],
        batch_size=arch['training']['batch_size'],
        capacity=2048,
        min_after_dequeue=1024,
        normalizer=normalizer,
    )

    machine = MODEL(arch)

    loss = machine.loss(image, label)
    trainer = TRAINER(loss, arch, args, dirs)
    trainer.train(nIter=arch['training']['max_iter'], machine=machine) 

Example 50

def _read_bin(self, stream, byte_order):
        '''
        Read data from a binary stream.

        '''
        return _np.fromfile(stream, self.dtype(byte_order), 1)[0] 
点赞