The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def __init__(self, x0, P0, Q, R, cor, f, h): self.Q = Q self.R = R self.cor = cor self.fa = lambda col: f(col[0], col[2]) self.ha = lambda col: h(col[0], col[1]) Pxx = P0 Pxv = 0. self.xa = np.array( ((x0,), (0.,), (0.,), (0.,)) ) self.Pa = np.array( ((Pxx, Pxv , 0. , 0. ), (Pxv, self.R, 0. , 0. ), (0. , 0. , self.Q , self.cor), (0. , 0. , self.cor, self.R )) ) self.lastobservation = np.NAN self.predictedobservation = np.NAN self.innov = np.NAN self.innovcov = np.NAN self.gain = np.NAN self.loglikelihood = 0.0
Example 2
def remask(self): """Reset the mask based on the seeded connected component. """ body = self.to_body() if not body.is_seed_in_mask(): return False new_mask_bin, bounds = body.get_seeded_component(CONFIG.postprocessing.closing_shape) new_mask_bin = new_mask_bin.astype(np.bool) mask_block = self.mask[map(slice, bounds[0], bounds[1])].copy() # Clip any values not in the seeded connected component so that they # cannot not generate moves when rechecking. mask_block[~new_mask_bin] = np.clip(mask_block[~new_mask_bin], None, 0.9 * CONFIG.model.t_move) self.mask[:] = np.NAN self.mask[map(slice, bounds[0], bounds[1])] = mask_block return True
Example 3
def MA_RIBBON(df, ma_series): ma_array = np.zeros([len(df), len(ma_series)]) ema_list = [] for idx, ma_len in enumerate(ma_series): ema_i = EMA(df, n = ma_len, field = 'close') ma_array[:, idx] = ema_i ema_list.append(ema_i) corr = np.empty([len(df)]) pval = np.empty([len(df)]) dist = np.empty([len(df)]) corr[:] = np.NAN pval[:] = np.NAN dist[:] = np.NAN max_n = max(ma_series) for idy in range(len(df)): if idy >= max_n - 1: corr[idy], pval[idy] = stats.spearmanr(ma_array[idy,:], range(len(ma_series), 0, -1)) dist[idy] = max(ma_array[idy,:]) - min(ma_array[idy,:]) corr_ts = pd.Series(corr*100, index = df.index, name = "MARIBBON_CORR") pval_ts = pd.Series(pval*100, index = df.index, name = "MARIBBON_PVAL") dist_ts = pd.Series(dist, index = df.index, name = "MARIBBON_DIST") return pd.concat([corr_ts, pval_ts, dist_ts] + ema_list, join='outer', axis=1)
Example 4
def read_csv(filename, skip_lines=0): csvfile = file(filename, 'rb') reader = csv.reader(csvfile) data = np.empty(0, dtype=object) last_count = np.NAN for line in reader: if skip_lines > 0: skip_lines = skip_lines - 1 continue if data.size > 0: if len(line) != last_count: raise Exception('unequal columes found') data = np.c_[data, line] last_count = len(line) else: data = np.array(line, dtype=object) data = data.reshape(len(data), 1) last_count = len(line) csvfile.close() return data.T
Example 5
def clear_fit(self, **kwargs): # if no pixel was provided the current pixel is updated if 'pixel' not in kwargs.keys() or kwargs['pixel'] == -1: px = self._focus[0] else: px = kwargs['pixel'][0] # clear fit self._fit_functions[px, :] = numpy.zeros(6) self._fit_initial_parameters[px, :, :] = numpy.NAN self._fit_optimized_parameters[px, :, :] = numpy.NAN # emit signal if 'emit' not in kwargs or kwargs['emit']: self._app.fit_changed.emit(self._id) # TODO: Flip for 1D
Example 6
def clear_fit(self, **kwargs): # if no pixel was provided the current pixel is updated if 'pixel' not in kwargs.keys() or kwargs['pixel'] == -1: px = self._focus[0] py = self._focus[1] else: px = kwargs['pixel'][0] py = kwargs['pixel'][1] # clear fit self._fit_functions[px, py, :] = numpy.zeros(6) self._fit_initial_parameters[px, py, :, :] = numpy.NAN self._fit_optimized_parameters[px, py, :, :] = numpy.NAN # emit signal if 'emit' not in kwargs or kwargs['emit']: self._app.fit_changed.emit(self._id)
Example 7
def rasterplot(ax,trange,tstart,tend,spikesOut,n_neurons,colors=['r','b'],\ size=2.5,marker='.',sort=False): spikesPlot = [] for i in n_neurons: spikesti = trange[spikesOut[:, i] > 0].ravel() spikesti = spikesti[np.where((spikesti>tstart) & (spikesti<tend))] if len(spikesti)==0: spikesPlot.append([np.NAN]) else: spikesPlot.append(spikesti) if sort: idxs = np.argsort( [spikesPlot[i][0] for i in range(len(spikesPlot))] ) idxs = idxs[::-1] # reverse sorted in time to first spike else: idxs = range(len(n_neurons)) for i,idx in enumerate(idxs): ax.scatter(spikesPlot[idx],[i+1]*len(spikesPlot[idx]),\ marker=marker,s=size,\ facecolor=colors[i%2],lw=0,clip_on=False) ax.set_ylim((1,len(n_neurons))) ax.set_xlim((tstart,tend)) ax.get_xaxis().get_major_formatter().set_useOffset(False)
Example 8
def get_read_reg_events(r_data, interval_start, num_bases): r_means = nh.get_read_base_means(r_data) if r_data.start > interval_start: # handle reads that start in middle of region start_overlap = interval_start + num_bases - r_data.start # create region with nan values region_means = np.empty(num_bases) region_means[:] = np.NAN region_means[-start_overlap:] = r_means[:start_overlap] elif r_data.end < interval_start + num_bases: # handle reads that end inside region end_overlap = r_data.end - interval_start # create region with nan values region_means = np.empty(num_bases) region_means[:] = np.NAN region_means[:end_overlap] = r_means[-end_overlap:] else: skipped_bases = interval_start - r_data.start region_means = r_means[ skipped_bases:skipped_bases + num_bases] return region_means
Example 9
def linkage(df, n_groups): # create the distance matrix based on the forbenius norm: |A-B|_F where A is # a 24 x N matrix with N the number of timeseries inside the dataframe df # TODO: We can save have time as we only need the upper triangle once as the # distance matrix is symmetric if True: Y = np.empty((n_groups, n_groups,)) Y[:] = np.NAN for i in range(len(Y)): for j in range(len(Y[i,:])): A = df.loc[i+1].values B = df.loc[j+1].values #print('Computing distance of:{},{}'.format(i,j)) Y[i,j] = norm(A-B, ord='fro') # condensed distance matrix as vector for linkage (upper triangle as a vector) y = Y[np.triu_indices(n_groups, 1)] # create linkage matrix with wards algorithm an euclidean norm Z = hac.linkage(y, method='ward', metric='euclidean') # R = hac.inconsistent(Z, d=10) return Z
Example 10
def fcluster(df, Z, n_groups, n_clusters): """ """ # create flat cluster, i.e. maximal number of clusters... T = hac.fcluster(Z, criterion='maxclust', depth=2, t=n_clusters) # add cluster id to original dataframe df['cluster_id'] = np.NAN # group is either days (1-365) or weeks (1-52) #for d in df.index.get_level_values('group').unique(): for g in range(1, n_groups+1): # T[d-1] because df.index is e.g. 1-365 (d) and T= is 0...364 df.ix[g, 'cluster_id'] = T[g-1] # add the cluster id to the index df.set_index(['cluster_id'], append=True, inplace=True) # set cluster id as first index level for easier looping through cluster_ids df.index = df.index.swaplevel(0, 'cluster_id') # just to have datetime at the last level of the multiindex df df.index = df.index.swaplevel('datetime', 'group') return df
Example 11
def set_value(self, column, value): if column not in self._columns: if isinstance(value, str): self._columns.update({ column: np.empty((1, len(self._df)), dtype="object") }) self._columns[column][:] = "" elif isinstance(value, bool): self._columns.update({ column: np.empty((1, len(self._df)), dtype="bool") }) self._columns[column][:] = False else: self._columns.update({ column: np.empty((1, len(self._df))) }) self._columns[column][:] = np.NAN self._columns[column][0, self._current_row_index] = value
Example 12
def linkage(counts_table): """ Return the linkage disequilibrium (D) for an arbitrary number of loci given their contingency table. """ probs_table = frequency_to_probability(counts_table) marginal_probs = get_marginal_probabilities(probs_table) if either_locus_not_detected(marginal_probs): return np.NAN exp_freqs = marginal_probs.prod(axis=0)[0] observed = probs_table.flat[-1] if observed == 0: return np.NAN return observed - exp_freqs
Example 13
def generate(self): self.__validate() self.__generatenoises() self.__generatejumps() processcount = len(self.__data._processnames) self.__data._processes = np.empty((self.__data._timecount, processcount)) self.__data._processes[:] = np.NAN for time in range(self.__data._timecount): for pi, (pn, pf) in enumerate(zip(self.__data._processnames, self.__processfuncs)): self.__data._processes[time, pi] = pf(time, pn, self.__data) return self.__data.copy()
Example 14
def tonumpyarray(self, fill=None, symmetric=False): import numpy as np if fill is None: fill = np.NAN res = np.empty((self.__dim, self.__dim)) idx = 0 for i in range(self.__dim): for j in range(i+1): res[i,j] = self._data[idx] if symmetric: res[j,i] = res[i,j] idx += 1 if not symmetric: res[i,i+1:self.__dim] = fill return res
Example 15
def tonumpyarray(self, fill=None, symmetric=False): import numpy as np if fill is None: fill = np.NAN res = np.empty((self.__dim, self.__dim)) idx = 0 for i in range(self.__dim): for j in range(i): res[i,j] = self._data[idx] if symmetric: res[j,i] = res[i,j] idx += 1 res[i,i] = fill if not symmetric: res[i,i+1:self.__dim] = fill return res
Example 16
def __init__(self, x0, P0, params): self._params = params self.x = x0 self.P = P0 self._constterm = self._params.meanlogvar * (1. - self._params.persistence) self._cv = self._params.cor * self._params.voloflogvar self._cv2 = self._cv * self._cv self._p2 = self._params.persistence * self._params.persistence self._v2 = self._params.voloflogvar * self._params.voloflogvar self.predictedobservation = np.NAN self.lastobservation = None self.innov = np.NAN self.innovcov = np.NAN self.gain = np.NAN self.loglikelihood = 0.0
Example 17
def _compose_alpha(img_in, img_layer, opacity: float=1.0): """ Calculate alpha composition ratio between two images. """ comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3]) * opacity new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3]) * comp_alpha np.seterr(divide='ignore', invalid='ignore') ratio = comp_alpha / new_alpha ratio[ratio == np.NAN] = 0.0 return ratio
Example 18
def check_binary_nan(self, name, xp, dtype): a = xp.array([-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, 2], dtype=dtype) b = xp.array([numpy.NAN, numpy.NAN, 1, 0, numpy.NAN, -1, -2], dtype=dtype) return getattr(xp, name)(a, b)
Example 19
def check_unary_nan(self, name, xp, dtype): a = xp.array( [-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, dtype('inf')], dtype=dtype) return (a,)
Example 20
def check_binary_nan(self, name, xp, dtype): a = xp.array([-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, 2], dtype=dtype) b = xp.array([numpy.NAN, numpy.NAN, 1, 0, numpy.NAN, -1, -2], dtype=dtype) return a, b
Example 21
def check_unary_nan(self, name, xp, dtype): a = xp.array( [-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, numpy.inf], dtype=dtype) return getattr(xp, name)(a)
Example 22
def fill_symbol_value(symbols, valsyms, vals, fill_value=np.NAN): if valsyms.size == 0: return np.tile(np.NAN, len(symbols)) values = np.tile(np.NAN, len(symbols)) if len(vals.shape) == 1 else np.tile(np.NAN, (len(symbols),vals.shape[1])) symbol2pos = ustr.get_str2pos_dict(symbols) for i in xrange(len(valsyms)): try: if len(vals.shape) == 1: values[symbol2pos[valsyms[i]]] = vals[i] else: values[symbol2pos[valsyms[i]], :] = vals[i, :] except Exception, e: pass values[np.isnan(values)] = fill_value return values
Example 23
def get_mat_ewma(tsmat, alpha): # EWMA(t) = alpha * ts(t) + (1-alpha) * EWMA(t-1) ewma = np.tile(np.NAN, tsmat.shape) for i in xrange(1, tsmat.shape[0]): init_selection = np.isnan(ewma[i-1, :]) ewma[i-1, init_selection] = tsmat[i-1, init_selection] ewma[i, :] = alpha * tsmat[i, :] + (1-alpha) * ewma[i-1, :] return ewma
Example 24
def get_mat_movingstd(tsmat, periods): mstd = np.empty(shape = tsmat.shape) mstd.fill(np.NAN) for i in xrange(tsmat.shape[0]): j = i - periods + 1 if j < 0: j = 0 mstd[i,:] = np.nanstd(tsmat[j:i+1,:], 0) return mstd
Example 25
def get_mat_ma(tsmat, periods): ma = np.empty(shape = tsmat.shape) ma.fill(np.NAN) for i in xrange(tsmat.shape[0]): j = i - periods + 1 if j < 0: j = 0 ma[i,:] = np.nanmean(tsmat[j:i+1,:], 0) return ma
Example 26
def get_array_ma(ts, periods): ma = np.empty(shape = len(ts)) ma.fill(np.NAN) for i in xrange(len(ts)): j = i - periods + 1 if j < 0: j = 0 ma[i] = np.nanmean(ts[j:i+1], 0) return ma # 0 for add, 1 for multiply
Example 27
def ret2value(returns): values = np.empty(shape=len(returns) + 1) values.fill(np.NAN) values[0] = 1 for i in xrange(len(returns)): values[i + 1] = values[i] * (1 + returns[i]) return values
Example 28
def retmat2valuemat(retmat): valuemat = np.tile(np.NAN, (retmat.shape[0] + 1, retmat.shape[1])) for i in xrange(retmat.shape[1]): valuemat[:, i] = ret2value(retmat[:, i]) return valuemat
Example 29
def value2ret(values): if len(values.shape) == 1: prevalues = np.append(np.NAN, values[0:-1]) returns = (values - prevalues) / prevalues returns[np.isinf(returns)] = np.NAN else: prevalues = np.r_[ np.tile(np.NAN, (1, values.shape[1])), values[0:-1, :]] returns = (values - prevalues) / prevalues returns[np.isinf(returns)] = np.NAN return returns
Example 30
def get_bstrs_pos_in_astrs(astrs, bstrs, astrs2pos={}): if not astrs2pos: astrs2pos = get_str2pos_dict(astrs) pos = np.zeros(shape=len(bstrs)) count = 0 for s in bstrs: try: pos[count] = astrs2pos[s] except Exception: pos[count] = np.NAN count += 1 return pos
Example 31
def check_binary_nan(self, name, xp, dtype): a = xp.array([-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, 2], dtype=dtype) b = xp.array([numpy.NAN, numpy.NAN, 1, 0, numpy.NAN, -1, -2], dtype=dtype) return getattr(xp, name)(a, b)
Example 32
def check_unary_nan(self, name, xp, dtype): a = xp.array( [-3, numpy.NAN, -1, numpy.NAN, 0, numpy.NAN, dtype('inf')], dtype=dtype) return getattr(xp, name)(a)
Example 33
def _create_empty_variables(self): total_gap_size = self._get_total_length_of_all_gaps() self.new_df = pd.DataFrame(np.empty([self.orig_df.shape[0]+total_gap_size,self.orig_df.shape[1]])) self.new_df.iloc[:]=np.NAN self.new_time_stamps = [] self.new_i = 0
Example 34
def empty_np_array_with_size(self,rows,columns): np_array = np.zeros((rows,columns)) np_array[:] = np.NAN return np_array
Example 35
def set_fit(self, fit_functions, fit_initial_parameters, fit_optimized_parameters, **kwargs): # if no pixel was provided the current pixel is updated if 'pixel' not in kwargs.keys() or kwargs['pixel'] == -1: px = self._focus[0] else: px = kwargs['pixel'][0] # clear the old fit data self._fit_functions[px, :] = numpy.zeros(6) self._fit_initial_parameters[px, :, :] = numpy.NAN self._fit_optimized_parameters[px, :, :] = numpy.NAN # set new fit data i_parameter = 0 for i_peak in range(len(fit_functions)): if fit_functions[i_peak] == 1: self._fit_functions[px, i_peak] = 1 self._fit_initial_parameters[px, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3] self._fit_initial_parameters[px, i_peak, 3] = 0 self._fit_optimized_parameters[px, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3] self._fit_optimized_parameters[px, i_peak, 3] = 0 i_parameter += 3 elif fit_functions[i_peak] == 2: self._fit_functions[px, i_peak] = 2 self._fit_initial_parameters[px, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3] self._fit_initial_parameters[px, i_peak, 3] = 0 self._fit_optimized_parameters[px, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3] self._fit_optimized_parameters[px, i_peak, 3] = 0 i_parameter += 3 elif fit_functions[i_peak] == 3: self._fit_functions[px, i_peak] = 3 self._fit_initial_parameters[px, i_peak, :] = fit_initial_parameters[i_parameter:i_parameter+4] self._fit_optimized_parameters[px, i_peak, :] = fit_optimized_parameters[i_parameter:i_parameter+4] i_parameter += 4 # emit signal if 'emit' not in kwargs or kwargs['emit']: self._app.fit_changed.emit(self._id)
Example 36
def set_fit(self, fit_functions, fit_initial_parameters, fit_optimized_parameters, **kwargs): # if no pixel was provided the current pixel is updated if 'pixel' not in kwargs.keys() or kwargs['pixel'] == -1: px = self._focus[0] py = self._focus[1] else: px = kwargs['pixel'][0] py = kwargs['pixel'][1] # clear the old fit data self._fit_functions[px, py, :] = numpy.zeros(6) self._fit_initial_parameters[px, py, :, :] = numpy.NAN self._fit_optimized_parameters[px, py, :, :] = numpy.NAN # set new fit data i_parameter = 0 for i_peak in range(len(fit_functions)): if fit_functions[i_peak] == 1: self._fit_functions[px, py, i_peak] = 1 self._fit_initial_parameters[px, py, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3] self._fit_initial_parameters[px, py, i_peak, 3] = 0 self._fit_optimized_parameters[px, py, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3] self._fit_optimized_parameters[px, py, i_peak, 3] = 0 i_parameter += 3 elif fit_functions[i_peak] == 2: self._fit_functions[px, py, i_peak] = 2 self._fit_initial_parameters[px, py, i_peak, :3] = fit_initial_parameters[i_parameter:i_parameter+3] self._fit_initial_parameters[px, py, i_peak, 3] = 0 self._fit_optimized_parameters[px, py, i_peak, :3] = fit_optimized_parameters[i_parameter:i_parameter+3] self._fit_optimized_parameters[px, py, i_peak, 3] = 0 i_parameter += 3 elif fit_functions[i_peak] == 3: self._fit_functions[px, py, i_peak] = 3 self._fit_initial_parameters[px, py, i_peak, :] = fit_initial_parameters[i_parameter:i_parameter+4] self._fit_optimized_parameters[px, py, i_peak, :] = fit_optimized_parameters[i_parameter:i_parameter+4] i_parameter += 4 # emit signal if 'emit' not in kwargs or kwargs['emit']: self._app.fit_changed.emit(self._id)
Example 37
def _compose_alpha(img_in, img_layer, opacity): """ Calculate alpha composition ratio between two images. """ comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3])*opacity new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3])*comp_alpha np.seterr(divide='ignore', invalid='ignore') ratio = comp_alpha/new_alpha ratio[ratio == np.NAN] = 0.0 return ratio
Example 38
def process(self, obj_data): ''' NaN's data from DataWrapper @param obj_data: Input DataWrapper, which will be modified in place ''' labels = self.labels column_names = self.column_names for label, data, err in obj_data.getIterator(): if (labels is None or label in labels) and \ (column_names is None or data.name in column_names): index = data.index if self.start is None: start = index[0] else: start = self.start if self.end is None: end = index[-1] else: end = self.end new_nans = np.empty(len(data[start:end])) new_nans[:] = np.NAN new_nans = pd.Series(new_nans, index=data[start:end].index) data.loc[start:end] = new_nans
Example 39
def calc_fishers_method(pos_pvals, offset): pvals_np = np.empty(pos_pvals[-1][1] + 1) pvals_np[:] = np.NAN pvals_np[[list(zip(*pos_pvals)[1])]] = np.maximum( zip(*pos_pvals)[0], nh.SMALLEST_PVAL) fishers_pvals = [ _calc_fm_pval(pvals_np[pos - offset:pos + offset + 1]) if pos - offset >= 0 and pos + offset + 1 <= pvals_np.shape[0] and not np.any(np.isnan(pvals_np[pos - offset:pos + offset + 1]) ) else 1.0 for _, pos, _, _ in pos_pvals] return fishers_pvals
Example 40
def test_single_point_nan(self): """Test behaviour for a single NaN grid cell.""" self.cube.data[0][0][6][7] = np.NAN msg = "NaN detected in input cube data" with self.assertRaisesRegexp(ValueError, msg): neighbourhood_method = CircularNeighbourhood NBHood(neighbourhood_method, self.RADIUS).process(self.cube)
Example 41
def test_threshold_point_nan(self): """Test behaviour for a single NaN grid cell.""" # Need to copy the cube as we're adjusting the data. self.cube.data[0][2][2] = np.NAN msg = "NaN detected in input cube data" plugin = Threshold( 2.0, fuzzy_factor=self.fuzzy_factor, below_thresh_ok=True) with self.assertRaisesRegexp(ValueError, msg): plugin.process(self.cube)
Example 42
def make_corners(self): x = self.x_t y = self.y_t dx_half = np.empty_like(x) dy_half = np.empty_like(x) dx_half[:, 1:] = (x[:, 1:] - x[:, 0:-1]) / 2.0 dy_half[1:, :] = (y[1:, :] - y[0:-1, :]) / 2.0 # Need to extend South dy_half[0, 1:] = dy_half[1, 1:] dx_half[0, 1:] = dx_half[1, 1:] # and West dy_half[:, 0] = dy_half[:, 1] dx_half[:, 0] = dx_half[:, 1] clon = np.empty((self.num_lat_points, self.num_lon_points, 4)) clon[:] = np.NAN clon[:, :, 0] = x - dx_half clon[:, :, 1] = x + dx_half clon[:, :, 2] = x + dx_half clon[:, :, 3] = x - dx_half assert(not np.isnan(np.sum(clon))) clat = np.empty((self.num_lat_points, self.num_lon_points, 4)) clat[:] = np.NAN clat[:, :, 0] = y - dy_half clat[:, :, 1] = y - dy_half clat[:, :, 2] = y + dy_half clat[:, :, 3] = y + dy_half assert(not np.isnan(np.sum(clat))) self.clon_t = clon self.clat_t = clat
Example 43
def calc_area_of_polygons(clons, clats): """ Calculate the area of lat-lon polygons. We project sphere onto a flat surface using an equal area projection and then calculate the area of flat polygon. This is slow we should do some caching to avoid recomputing. """ areas = np.zeros(clons.shape[1:]) areas[:] = np.NAN for j in range(areas.shape[0]): for i in range(areas.shape[1]): lats = clats[:, j, i] lons = clons[:, j, i] lat_centre = lats[0] + abs(lats[2] - lats[1]) / 2 lon_centre = lons[0] + abs(lons[1] - lons[0]) / 2 pa = pyproj.Proj(proj_str.format(lat_centre, lon_centre)) x, y = pa(lons, lats) cop = {"type": "Polygon", "coordinates": [zip(x, y)]} areas[j, i] = shape(cop).area assert(np.sum(areas) is not np.NAN) assert(np.min(areas) > 0) return areas
Example 44
def cell2val(matrix_list, index): pos_index = 0 matpos = {} for i in range(0,index): for j in range(0,index): if i <= j: matpos[(i,j)] = pos_index pos_index += 1 valmatrix = np.zeros(pos_index) for matrix in matrix_list: newvec = np.zeros(pos_index) matrix_open = open(matrix) for line in matrix_open: bin1, bin2, raw, norm, chrom1, chrom2 = line.split() # if chrom1 == chrom2: #Ignore intrachromosomal contacts for now; could also implement as a check to see how close bin1 and bin2 are # norm = np.NAN coord = (int(bin1), int(bin2)) pos = matpos[coord] if bin1 == bin2 or raw == 0: newvec[pos] = 0 #set to which value you want to compute cors for (root normalized coverage, or raw coverage) else: newvec[pos] = log10(float(raw)) valmatrix = np.vstack((valmatrix, newvec)) matrix_open.close() valmatrix = np.delete(valmatrix, 0, 0) return valmatrix
Example 45
def _init_pane(self): nan = np.array([np.NAN, np.NAN]) X = np.column_stack([nan] * len(self.legend)) Y = np.column_stack([nan] * len(self.legend)) return self.viz.line( X=X, Y=Y, env=self.env, opts=self.opts)
Example 46
def make_corners(self): # Uses double density grid to figure out corners. x = self.x_vt y = self.y_vt # Corners of t points. Index 0 is bottom left and then # anti-clockwise. clon = np.empty((self.x_t.shape[0], self.x_t.shape[1], 4)) clon[:] = np.NAN clon[:,:,0] = x[0:-1:2,0:-1:2] clon[:,:,1] = x[0:-1:2,2::2] clon[:,:,2] = x[2::2,2::2] clon[:,:,3] = x[2::2,0:-1:2] assert(not np.isnan(np.sum(clon))) clat = np.empty((self.x_t.shape[0], self.x_t.shape[1], 4)) clat[:] = np.NAN clat[:,:,0] = y[0:-1:2,0:-1:2] clat[:,:,1] = y[0:-1:2,2::2] clat[:,:,2] = y[2::2,2::2] clat[:,:,3] = y[2::2,0:-1:2] assert(not np.isnan(np.sum(clat))) self.clon_t = clon self.clat_t = clat
Example 47
def make_corners(self): x = self.x_t y = self.y_t dx_half = self.dx / 2.0 dy_half = self.dy / 2.0 # Set grid corners, we do these one corner at a time. Start at the # bottom left and go anti-clockwise. This is the SCRIP convention. clon = np.empty((self.num_lat_points, self.num_lon_points, 4)) clon[:] = np.NAN clon[:,:,0] = x - dx_half clon[:,:,1] = x + dx_half clon[:,:,2] = x + dx_half clon[:,:,3] = x - dx_half assert(not np.isnan(np.sum(clon))) clat = np.empty((self.num_lat_points, self.num_lon_points, 4)) clat[:] = np.NAN clat[:,:,0] = y - dy_half clat[:,:,1] = y - dy_half clat[:,:,2] = y + dy_half clat[:,:,3] = y + dy_half assert(not np.isnan(np.sum(clat))) # The bottom latitude band should always be Southern extent. assert(np.all(clat[0, :, 0] == np.min(y) - dy_half)) assert(np.all(clat[0, :, 1] == np.min(y) - dy_half)) # The top latitude band should always be Northern extent. assert(np.all(clat[-1, :, 2] == np.max(y) + dy_half)) assert(np.all(clat[-1, :, 3] == np.max(y) + dy_half)) self.clon_t = clon self.clat_t = clat
Example 48
def __mask_plot_data__(self, arr): #tmp = self.Data.variables[key][:].ravel()FIGURE_FILENAME_TEMPLATE = 'qa-cab_pres_temp_%s_r%.2i_%s.png #arr.ravel()[self.Index] = np.NAN arr[self.Index] = np.NAN return arr
Example 49
def cosegregation(counts_table): """ Return the co-segregation frequency of n loci given their contingency table. """ probs_table = frequency_to_probability(counts_table) if either_locus_not_detected(probs_table): return np.NAN return probs_table.flat[-1]
Example 50
def expected(counts_table): """ Return the expected co-segregation probability of an arbitrary number of loci given their contingency table. """ probs_table = frequency_to_probability(counts_table) marginal_probs = get_marginal_probabilities(probs_table) if either_locus_not_detected(marginal_probs): return np.NAN exp_freqs = marginal_probs.prod(axis=0)[0] return exp_freqs