Python numpy.remainder() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def createRFmask(self):

        center_row = int(self.newSimulation.Params['N']/2.0)
        center_col = int(self.newSimulation.Params['N']/2.0)

        for cell in np.arange(self.newSimulation.Params['N']*self.newSimulation.Params['N']):
            row = int(cell/self.newSimulation.Params['N'])
            col = np.remainder(cell,self.newSimulation.Params['N'])

            if(row >= center_row - self.mask_side and row<= center_row + self.mask_side and
            col >= center_col - self.mask_side and col<= center_col + self.mask_side):
                self.RF_mask.append([row,col])

#        print ("self.RF_mask = ",self.RF_mask)

    # Create input stimulus and simulate photoreceptors' response 

Example 2

def test_remainder_basic(self):
        dt = np.typecodes['AllInteger'] + np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
                    continue
                if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
                    continue
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*71, dtype=dt1)
                b = np.array(sg2*19, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 3

def test_float_remainder_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for dt in np.typecodes['Float']:
            msg = 'dtype: %s' % (dt,)
            fa = a.astype(dt)
            fb = b.astype(dt)
            div = np.floor_divide(fa, fb)
            rem = np.remainder(fa, fb)
            assert_equal(div, tgtdiv, err_msg=msg)
            assert_equal(rem, tgtrem, err_msg=msg) 

Example 4

def test_float_remainder_roundoff(self):
        # gh-6127
        dt = np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*78*6e-8, dtype=dt1)
                b = np.array(sg2*6e-8, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                # Equal assertion should hold when fmod is used
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 5

def one_melody_matrix(track_id):

    tchr, chroma, t, melody = aligned_pitch_features(track_id)
    melody = np.round(melody)
    pitched = melody > 0
    pitchclass = np.remainder(melody - 69, 12)
    framerate = 1.0/(t[1]-t[0])

    nmel = len(melody)

    vals = np.ones(nmel)[pitched]
    vals *= 1.0 / framerate
    rows = np.arange(nmel)[pitched]
    cols = pitchclass[pitched]
    melmat = csr_matrix((vals, (rows, cols)), shape=(nmel, 12))
    return t, melmat.todense() 

Example 6

def test_remainder_basic(self):
        dt = np.typecodes['AllInteger'] + np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
                    continue
                if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
                    continue
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*71, dtype=dt1)
                b = np.array(sg2*19, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 7

def test_float_remainder_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for dt in np.typecodes['Float']:
            msg = 'dtype: %s' % (dt,)
            fa = a.astype(dt)
            fb = b.astype(dt)
            div = np.floor_divide(fa, fb)
            rem = np.remainder(fa, fb)
            assert_equal(div, tgtdiv, err_msg=msg)
            assert_equal(rem, tgtrem, err_msg=msg) 

Example 8

def test_float_remainder_roundoff(self):
        # gh-6127
        dt = np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*78*6e-8, dtype=dt1)
                b = np.array(sg2*6e-8, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                # Equal assertion should hold when fmod is used
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 9

def test_remainder_basic(self):
        dt = np.typecodes['AllInteger'] + np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
                    continue
                if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
                    continue
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*71, dtype=dt1)
                b = np.array(sg2*19, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 10

def test_float_remainder_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for dt in np.typecodes['Float']:
            msg = 'dtype: %s' % (dt,)
            fa = a.astype(dt)
            fb = b.astype(dt)
            div = np.floor_divide(fa, fb)
            rem = np.remainder(fa, fb)
            assert_equal(div, tgtdiv, err_msg=msg)
            assert_equal(rem, tgtrem, err_msg=msg) 

Example 11

def test_float_remainder_roundoff(self):
        # gh-6127
        dt = np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*78*6e-8, dtype=dt1)
                b = np.array(sg2*6e-8, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                # Equal assertion should hold when fmod is used
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 12

def test_remainder_basic(self):
        dt = np.typecodes['AllInteger'] + np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
                    continue
                if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
                    continue
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*71, dtype=dt1)
                b = np.array(sg2*19, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 13

def test_float_remainder_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for dt in np.typecodes['Float']:
            msg = 'dtype: %s' % (dt,)
            fa = a.astype(dt)
            fb = b.astype(dt)
            div = np.floor_divide(fa, fb)
            rem = np.remainder(fa, fb)
            assert_equal(div, tgtdiv, err_msg=msg)
            assert_equal(rem, tgtrem, err_msg=msg) 

Example 14

def test_float_remainder_roundoff(self):
        # gh-6127
        dt = np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*78*6e-8, dtype=dt1)
                b = np.array(sg2*6e-8, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                # Equal assertion should hold when fmod is used
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 15

def frame_to_state_mapping(shift_file, lab_file, fs, states_per_phone=5):
    #Read files:
    v_shift = lu.read_binfile(shift_file, dim=1)
    v_pm = la.shift_to_pm(v_shift)
    m_state_times = np.loadtxt(lab_file, usecols=(0,1))    
    
    # to miliseconds:
    v_pm_ms = 1000 * v_pm / fs
    m_state_times_ms = m_state_times / 10000.0    
    
    # Compare:
    nfrms = len(v_pm_ms)
    v_st = np.zeros(nfrms) - 1 # init
    for f in xrange(nfrms):
        vb_greater = (v_pm_ms[f] >= m_state_times_ms[:,0])  # * (v_pm_ms[f] <  m_state_times_ms[:,1])
        state_nx   = np.where(vb_greater)[0][-1]
        v_st[f]    = np.remainder(state_nx, states_per_phone)
    return v_st
    
#============================================================================== 

Example 16

def test_remainder_basic(self):
        dt = np.typecodes['AllInteger'] + np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
                    continue
                if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
                    continue
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*71, dtype=dt1)
                b = np.array(sg2*19, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 17

def test_float_remainder_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for dt in np.typecodes['Float']:
            msg = 'dtype: %s' % (dt,)
            fa = a.astype(dt)
            fb = b.astype(dt)
            div = np.floor_divide(fa, fb)
            rem = np.remainder(fa, fb)
            assert_equal(div, tgtdiv, err_msg=msg)
            assert_equal(rem, tgtrem, err_msg=msg) 

Example 18

def test_float_remainder_roundoff(self):
        # gh-6127
        dt = np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*78*6e-8, dtype=dt1)
                b = np.array(sg2*6e-8, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                # Equal assertion should hold when fmod is used
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 

Example 19

def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with warnings.catch_warnings():
            warnings.simplefilter('always')
            warnings.simplefilter('ignore', RuntimeWarning)
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 

Example 20

def __mod__(self, other):
        return remainder(self, other) 

Example 21

def __imod__(self, other):
        return remainder(self, other, self) 

Example 22

def __rmod__(self, other):
        return remainder(other, self) 

Example 23

def gridF(fs, csf):
    """
    Concatenates PSF kernels to one 2d image, potentially useful for plotting.
    
    --------------------------------------------------------------------------
    Usage:
    
    Call:  gridF(fs, csf)
    
    Input: fs   PSF kernels, i.e. 3d array with kernels indexed by 0th index
           csf  size of kernels in x and y direction
 
    Output: 2d image with PSF kernels arranged according to csf
    --------------------------------------------------------------------------

    Copyright (C) 2011 Michael Hirsch
    """    

    f = np.ones((fs.shape[1]*csf[0],fs.shape[2]*csf[1]))

    for i in range(np.prod(csf)):
        k = i/csf[1]
        l = np.remainder(i,csf[1])
        
        f[k * fs.shape[1]:(k+1)*fs.shape[1],
          l * fs.shape[2]:(l+1)*fs.shape[2]] = fs[i,:,:]

    return f 

Example 24

def modTwo(C):
	"""Q & D way to Mod 2 all results"""
	D = C.copy()
	D.fill(2)
	return np.remainder(C,D) 

Example 25

def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with warnings.catch_warnings():
            warnings.simplefilter('always')
            warnings.simplefilter('ignore', RuntimeWarning)
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 

Example 26

def gravityeffect(h0,s0,p0,tl,amp,phases):
    """
    purpose:  To compute the gravity effect due to each        
    tidal component.
    """
    dtor = np.pi/180
    R90 = np.pi/2       
    R360 = np.pi*2
    p0 = np.remainder(p0,R360)
    h0 = np.remainder(h0,R360)
    s0 = np.remainder(s0,R360)
    tl = np.remainder(tl,R360)
    arg=np.zeros(11)
    # argument                     component
    arg[0] = 2*tl - 2*s0          # M2
    arg[1] = 2*tl - 2*h0          # S2
    arg[2] = tl - R90             # K1
    arg[3] = tl - 2*s0 + R90      # O1
    arg[4] = 2*tl - 3*s0 + p0     # N2
    arg[5] = tl - 2*h0 + R90      # P1
    arg[6] = 2*tl                 # K2
    arg[7] = tl - 3*s0 + p0 +R90  # Q1
    arg[8] = 2*s0                 # Mf
    arg[9] = s0 - p0              # Mm
    arg[10] = 2*h0                # Ssa
    totaleffect=np.sum([amp[i]*np.cos(arg[i] - phases[i]*dtor) for i in range(len(arg))])
    return totaleffect 

Example 27

def keepParticlesInCell(positions):
    for p in range(config.nParticles):
        positions[p,:] = np.remainder(positions[p,:], config.lCalc);
        
# Calculate the forces. Jitted to make is super fast
# Code has been based on: http://combichem.blogspot.nl/2013/04/fun-with-numba-numpy-and-f2py.html 

Example 28

def lanczosIndexedShift( params ):
    """ lanczosIndexedShift( params )
        params = (index, imageStack, translations, kernelShape=3, lobes=None)
        imageStack = input 3D numpy array
        translations = [y,x] shift, recommened not to exceed 1.0, should be float
        
    Random values of kernelShape and lobes gives poor performance.  Generally the 
    lobes has to increase with the kernelShape or you'll get a lowpass filter.
    
    Generally lobes = (kernelShape+1)/2 
    
    kernelShape=3 and lobes=2 is a lanczos2 kernel, it has almost no-lowpass character
    kernelShape=5 and lobes=3 is a lanczos3 kernel, it's the typical choice
    Anything with lobes=1 is a low-pass filter, but next to no ringing artifacts
    
    If you cheat and pass in rounded shifts only the roll will be performed, so this can be used to accelerate
    roll as well in a parallel environment.
    """
    if len( params ) == 3:
        [index, imageStack, translations] = params
        kernelShape = 3 
        lobes = None
    elif len( params ) == 4:
        [index, imageStack, translations, kernelShape] = params
        lobes = None
    elif len( params ) == 5:
        [index, imageStack, translations, kernelShape, lobes] = params

    integer_trans = np.round( translations[index,:] ).astype('int')
    # Integer shift
    imageStack[index,:,:] = np.roll( np.roll( imageStack[index,:,:], 
            integer_trans[0], axis=0 ), 
            integer_trans[1], axis=1 )
    # Subpixel shift
    remain_trans = np.remainder( translations[index,:], 1)
    if not (np.isclose( remain_trans[0], 0.0) and np.isclose( remain_trans[1], 0.0) ):
        kernel = lanczosSubPixKernel( remain_trans, kernelShape=kernelShape, lobes=lobes  )
        # RAM: I tried to use the out= keyword but it's perhaps not thread-safe.
        imageStack[index,:,:] =  scipy.ndimage.convolve( imageStack[index,:,:], kernel, mode='reflect' ) 

Example 29

def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with warnings.catch_warnings():
            warnings.simplefilter('always')
            warnings.simplefilter('ignore', RuntimeWarning)
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 

Example 30

def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in remainder")
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 

Example 31

def frame_to_state_mapping2(shift_file, state_lab_file, fs, states_per_phone=5, b_refine=True):
    #Read files:
    v_shift = lu.read_binfile(shift_file, dim=1)
    v_pm = la.shift_to_pm(v_shift)
    m_state_times = np.loadtxt(state_lab_file, usecols=(0,1))    
    
    # to miliseconds:
    v_pm_ms = 1000 * v_pm / fs
    m_state_times_ms = m_state_times / 10000.0    
    
    # Compare:
    nfrms = len(v_pm_ms)
    v_st = np.zeros(nfrms) - 1 # init
    for f in xrange(nfrms):
        vb_greater = (v_pm_ms[f] >= m_state_times_ms[:,0])  # * (v_pm_ms[f] <  m_state_times_ms[:,1])
        state_nx   = np.where(vb_greater)[0][-1]
        v_st[f]    = np.remainder(state_nx, states_per_phone)

        # Refining:
        if b_refine:
            state_len_ms = m_state_times_ms[state_nx,1] - m_state_times_ms[state_nx,0]
            fine_pos = ( v_pm_ms[f] - m_state_times_ms[state_nx,0] ) / state_len_ms
            v_st[f] += fine_pos 
            
    # Protection against wrong ended label files:
    np.clip(v_st, 0, states_per_phone, out=v_st)      
            
    return v_st
    
#============================================================================== 

Example 32

def mand2pixmap(self,width:int,height:int, mand, maxiter:int, pixmap, progress, e):
        pen=[]
        pen.append(qRgb(0,0,0))
        maxcol=len(colormap)
        for i in range(maxcol):
            (r,g,b)=colormap[(i+self.coffset)%maxcol]
            pen.append(qRgb(r,g,b))

        
        z = np.full((width, height),maxcol, dtype=int)

        mand2 = np.remainder(mand, z)
        mand2[mand==0]=-1
        mand2 = np.add(mand2, np.ones((width, height), int))
              
        st=100/height
        im=QImage(height, width, QImage.Format_RGB888)
        for j in range(0,height-1,5):
            for i in range(width):
                im.setPixel(height-j-1,width-i-1,pen[mand2[i,j]])
                im.setPixel(height-j-2,width-i-1,pen[mand2[i,j+1]])
                im.setPixel(height-j-3,width-i-1,pen[mand2[i,j+2]])
                im.setPixel(height-j-4,width-i-1,pen[mand2[i,j+3]])
                im.setPixel(height-j-5,width-i-1,pen[mand2[i,j+4]])
            progress.setValue(st*j)
            e.processEvents()
        p = QPainter()
        p.begin(pixmap)
        p.drawImage(QPoint(0,0),im)
        self.bild.update() 

Example 33

def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with warnings.catch_warnings():
            warnings.simplefilter('always')
            warnings.simplefilter('ignore', RuntimeWarning)
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 

Example 34

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 35

def ang2pix_ring_single(nside, theta, phi):
    """Calculate the pixel indexes in RING ordering scheme for one single
    pair of angular coordinate on the sphere.

    Parameters
    ----------
    theta : float
        The polar angle (i.e., latitude), ? ? [0, ?]. (unit: rad)
    phi : float
        The azimuthal angle (i.e., longitude), ? ? [0, 2?). (unit: rad)

    Returns
    -------
    ipix : int
        The index of the pixel corresponding to the input coordinate.

    NOTE
    ----
    * Only support the *RING* ordering scheme
    * This is the JIT-optimized version that partially replaces the
      ``healpy.ang2pix``

    References
    ----------
    - HEALPix software: ``src/C/subs/chealpix.c``: ``ang2pix_ring_z_phi()``
      http://healpix.sourceforge.net/
    """
    z = np.cos(theta)  # colatitude
    za = np.absolute(z)
    tt = (2.0 / np.pi) * np.remainder(phi, 2*np.pi)  # range: [0, 4)
    if za <= 2.0/3.0:
        # Equatorial region
        temp1 = nside * (tt + 0.5)
        temp2 = nside * z * 0.75
        jp = int(temp1 - temp2)  # Index of ascending edge line
        jm = int(temp1 + temp2)  # Index of descending edge line
        # Ring number counted from z=2/3
        iring = nside + 1 + jp - jm  # range: [1, 2n+1]
        kshift = 1 - (iring & 1)  # kshift=1 if ir even, 0 otherwise
        ip = int((jp + jm - nside + kshift + 1) / 2)
        ip = np.remainder(ip, 4*nside)
        ipix = nside * (nside-1) * 2 + (iring-1) * 4 * nside + ip
    else:
        # North & South polar caps
        tp = tt - int(tt)
        tmp = nside * np.sqrt(3 * (1-za))
        jp = int(tp * tmp)
        jm = int((1.0-tp) * tmp)
        # Ring number counted from the closest pole
        iring = jp + jm + 1
        ip = int(tt * iring)
        ip = np.remainder(ip, 4*iring)
        #
        if z > 0:
            ipix = 2 * iring * (iring-1) + ip
        else:
            ipix = 12 * nside * nside - 2 * iring * (iring+1) + ip
    #
    return ipix 

Example 36

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 37

def compute(self, X=[]):
        if len(X)==0:
            X=self.data
        else:
            pass
        
        originalLength=X.shape[0]
        originalWidth=self.weightsOpenCL.shape[0]
        
        if not self.openCL.active:
            raise Exception('openCL not active')
            #===================================================================
            # networks=self.weights.wHL.shape[0]
            # phiOL=np.empty((X.shape[0], networks))
            # for i0 in range(networks):
            #     aHL=X.dot(self.weights.wHL[i0,:,:])+np.tile(self.weights.bHL[i0,],(X.shape[0],1))
            #     phiHL=self._activate(aHL,0)
            #     aOL=phiHL.dot(self.weights.wOL[:,i0])+self.weights.bOL[i0,]
            #     phiOL[:,i0]=self._activate(aOL,1)
            #===================================================================
        else:
            remData=np.remainder(X.shape[0],self.openCL.workGroup[0])
            if remData != 0:
                X=np.vstack((X, np.zeros((self.openCL.workGroup[0]-remData, X.shape[1]))))
            else:
                remData=self.openCL.workGroup[0]
            
            remNetwork=np.remainder(self.weightsOpenCL.shape[0],self.openCL.workGroup[1])
            if remNetwork != 0:
                weights=np.vstack((self.weightsOpenCL, np.zeros((self.openCL.workGroup[1]-remNetwork, self.weightsOpenCL.shape[1]))))
            else:
                weights=self.weightsOpenCL
                remNetwork=self.openCL.workGroup[1]
            
            XOpenCL=X.reshape(-1, order = 'C').astype(np.float32)
            weightsOpenCL=weights.reshape(-1, order = 'C').astype(np.float32)
            
            mf = cl.mem_flags
            inputs=np.int32(X.shape[1])
            nodes=np.int32(self.nodes)
            dataSize=np.int32(X.shape[0])
            weightSize=np.int32(self.weightsOpenCL.shape[1])
            dataBuffer = cl.Buffer(self.openCL.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=XOpenCL)
            weightsBuffer = cl.Buffer(self.openCL.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=weightsOpenCL)
            outBuffer = cl.Buffer(self.openCL.ctx, mf.WRITE_ONLY, int(XOpenCL.nbytes/inputs*weights.shape[0]))
            
            kernel=self.openCL.prg.ann
            globalSize=(int(X.shape[0]), int(weights.shape[0]))
            localSize=(int(self.openCL.workGroup[0]), int(self.openCL.workGroup[1]))
                
            kernel(self.openCL.queue, globalSize, localSize, inputs, nodes, dataSize, weightSize, dataBuffer, outBuffer, weightsBuffer, cl.LocalMemory(self.weightsOpenCL[0,].nbytes*localSize[1]))
            
            phiOL = np.empty((np.prod(globalSize),)).astype(np.float32)
            cl.enqueue_copy(self.openCL.queue, phiOL, outBuffer)
            phiOL=np.reshape(phiOL, globalSize, order='F')[:originalLength,:originalWidth]
        
            if self.lowerThreshold!=-999:
                phiOL[phiOL<self.lowerThreshold] = self.lowerThreshold
        
        return phiOL 

Example 38

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 39

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 40

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 41

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 

Example 42

def pbc_wrap_coords(coords_frac, copy=True, mask=[True]*3, xyz_axis=-1):
    """Apply periodic boundary conditions to array of fractional coords. 
    
    Wrap atoms with fractional coords > 1 or < 0 into the cell.
    
    Parameters
    ----------
    coords_frac : array 2d or 3d
        fractional coords, if 3d then one axis is assumed to be a time axis and
        the array is a MD trajectory or such
    copy : bool
        Copy coords_frac before applying pbc.     
    mask : sequence of bools, len = 3 for x,y,z
        Apply pbc only x, y or z. E.g. [True, True, False] would not wrap the z
        coordinate.
    xyz_axis : the axis of `coords_frac` where the indices 0,1,2 pull out the x,y,z
        coords. For a usual 2d array of coords with shape (natoms,3), 
        xyz_axis=1 (= last axis = -1). For a 3d array (natoms, nstep, 3),
        xyz_axis=2 (also -1).
    
    Returns
    -------
    coords_frac : array_like(coords_frac)
        Array with all values in [0,1] except for those where ``mask[i]=False``.

    Notes
    -----
    About the copy arg: If ``copy=False``, then this is an in-place operation
    and the array in the global scope is modified! In fact, then these do the
    same::
    
        >>> a = pbc_wrap_coords(a, copy=False)
        >>> pbc_wrap_coords(a, copy=False)
    """
    assert coords_frac.shape[xyz_axis] == 3, "dim of xyz_axis of `coords_frac` must be == 3"
    ndim = coords_frac.ndim
    assert ndim in [2,3], "coords_frac must be 2d or 3d array"
    tmp = coords_frac.copy() if copy else coords_frac
    for i in range(3):
        if mask[i]:
            sl = [slice(None)]*ndim
            sl[xyz_axis] = i
            tmp[sl] = np.remainder(tmp[sl], 1.0)
    return tmp 

Example 43

def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])
        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])
        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) 
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注