题目描述
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
思路
思路一:
遍历每个结点,借助一个获取树深度的递归函数,根据该结点的左右子树高度差判断是否平衡,然后递归地对左右子树进行判断。时间复杂度:\(O(n^2)\)
思路二:
从下往上遍历,如果子树是平衡二叉树,则返回子树高度,否则返回-1。时间复杂度:\(O(n)\)
代码实现
package Tree;
/**
* 平衡二叉树
* 输入一棵二叉树,判断该二叉树是否是平衡二叉树。
* 平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:
* 它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
*/
public class Solution20 {
public static void main(String[] args) {
Solution20 solution20 = new Solution20();
int[] array = {8, 6, 10, 5, 7, 9, 11};
TreeNode treeNode = solution20.createBinaryTreeByArray(array, 0);
System.out.println(solution20.IsBalanced_Solution_2(treeNode));
}
/**
* 从下往上遍历,如果子树是平衡二叉树,则返回子树高度,否则返回-1
* 时间复杂度:O(n)
*
* @param root
* @return
*/
public boolean IsBalanced_Solution_2(TreeNode root) {
return MaxDepth_2(root) != -1;
}
public int MaxDepth_2(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = MaxDepth_2(root.left);
if (leftHeight == -1) {
return -1;
}
int rightHeight = MaxDepth_2(root.right);
if (rightHeight == -1) {
return -1;
}
return Math.abs(leftHeight - rightHeight) > 1 ? -1 : 1 + Math.max(leftHeight, rightHeight);
}
/**
* 遍历每个结点,借助一个获取树深度的递归函数,根据该结点的左右子树高度差判断是否平衡,然后递归地对左右子树进行判断。
* 时间复杂度:O(n^2)
*
* @param root
* @return
*/
public boolean IsBalanced_Solution(TreeNode root) {
if (root == null) {
return true;
}
if (Math.abs(MaxDepth(root.left) - MaxDepth(root.right)) > 1)
return false;
return IsBalanced_Solution(root.left) && IsBalanced_Solution(root.right);
}
public int MaxDepth(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + Math.max(MaxDepth(root.left), MaxDepth(root.right));
}
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
public TreeNode createBinaryTreeByArray(int[] array, int index) {
TreeNode tn = null;
if (index < array.length) {
int value = array[index];
tn = new TreeNode(value);
tn.left = createBinaryTreeByArray(array, 2 * index + 1);
tn.right = createBinaryTreeByArray(array, 2 * index + 2);
return tn;
}
return tn;
}
}