The knight’s tour puzzle is played on a chess board with a single chess piece, the knight. The object of the puzzle is to find a sequence of moves that allow the knight to visit every square on the board exactly once. One such sequence is called a “tour.” The knight’s tour puzzle has fascinated chess players, mathematicians and computer scientists alike for many years. The upper bound on the number of possible legal tours for an eight-by-eight chessboard is known to be 1.305×10351.305×1035; however, there are even more possible dead ends. Clearly this is a problem that requires some real brains, some real computing power, or both.
Although researchers have studied many different algorithms to solve the knight’s tour problem, a graph search is one of the easiest to understand and program. Once again we will solve the problem using two main steps:
Represent the legal moves of a knight on a chessboard as a graph.
Use a graph algorithm to find a path of length rows×columns−1rows×columns−1 where every vertex on the graph is visited exactly once.
解题代码:
""" knight tour problem """
from pythonds.graphs import Graph
class KnightProblem(object):
""" solution class bd_size: 方阵棋盘的边长(以格数计数) step: knight的步伐(移动方式) """
def __init__(self, bd_size):
self.bd_size_ = bd_size
self.knight_graph_ = Graph()
self.step_ = [(-2, -1), (-2, 1),
(-1, -2), (-1, 2),
(1, -2), (1, 2),
(2, -1), (2, 1)]
def build_knight_graph(self):
""" 构建 knight graph """
for row in range(self.bd_size_):
for col in range(self.bd_size_):
current_id = self.gener_node_id(row, col)
for nid in self.get_next_nodes(row, col):
self.knight_graph_.addEdge(current_id, nid)
def gener_node_id(self, row, col):
""" 根据当前所在行、列生成该结点的序号 算法:序号 = row * bd_size + col """
return row * self.bd_size_ + col
def get_next_nodes(self, row, col):
""" 获取从当前所在结点的下一个合法移动所到达的结点 """
next_nodes = []
for move in self.step_:
new_row = row + move[0]
new_col = col + move[1]
if self.is_legal_node(new_row, new_col):
nid = self.gener_node_id(new_row, new_col)
next_nodes.append(nid)
return next_nodes
def is_legal_node(self, row, col):
""" 判断此结点是不是一个合法结点 算法:row/col > 0 and < bd_size """
if row < 0 or row > self.bd_size_:
return False
elif col < 0 or col > self.bd_size_:
return False
else:
return True
def dfs(self, current_vertex, vertex_path, current_depth=0):
""" 深度优先搜索 recursion """
current_vertex.setColor('gray')
vertex_path.append(current_vertex)
# base case
if current_depth < self.bd_size_ * self.bd_size_ - 1:
done = False
# 获取当前结点的所有相邻结点
i = 0
# 常规解法,不采取启发式优化,找出遍历8*8规格的棋盘,
#一般笔记本可能需要半小时
# nbrs = list(current_vertex.getConnections())
# 采用启发式优化,则在1s内完成
nbrs = self.order_by_avail(current_vertex)
while not done and i < len(nbrs):
if nbrs[i].getColor() == 'white':
done = self.dfs(nbrs[i], vertex_path, current_depth + 1)
i += 1
if not done: # perparing to trace back
vertex_path.pop()
current_vertex.setColor('white')
else:
done = True
return done
def order_by_avail(self, current_vertex):
""" 启发式优化 根据各邻近结点的未访问子节点数 n_avail 对当前结点的邻近结点进行ascending排序 """
res_list = []
# nbr为当前结点的邻近结点
for nbr in current_vertex.getConnections():
if nbr.getColor() == 'white':
c = 0
for n in nbr.getConnections():
if n.getColor() == 'white':
c += 1
res_list.append((nbr, c))
res_list.sort(key=lambda x:x[1])
return [y[0] for y in res_list]
if __name__ == '__main__':
kf_graph = KnightProblem(8)
kf_graph.build_knight_graph()
path = []
print(kf_graph.dfs(kf_graph.knight_graph_.getVertex(0), path))
print(path)
启发式优化的思想是:让knight一开始尽量绕着棋盘的边缘游走。
因为棋盘边缘的可走路径少(2或3),而棋盘中间可走路径多(8),因此能先遍历边缘结点,使迭代次数减少。到了knight游走后期,虽然knight不得不走到棋盘中间,但因为边缘的结点已被遍历过(游戏规则是一个结点只能遍历一次),此时即使在棋盘中间,可走的路径也大大减少了。通过人类的智慧,启发式方法的达到了极其优化的效果。