粒子群算法的几个比较大的改进:
(1)离散粒子群算法:粒子搜索位置为0-1离散值,速度更新公式通过sigmoid函数得到概率值p,决定当前位置的参数是0还是1;
(2)混沌粒子群算法:由确定的方程得出不确定的方程,呈不确定状态的变量成为混沌变量。在混沌粒子群算法中,以全局最优解gbest迭代产生混沌序列,混沌序列通过方程映射回原解空间,序列中最优位置随机替代某个粒子的位置,叫做混沌优化。
(3)量子粒子群算法:因为粒子的位置和速度在量子空间中不能一起确定,所以用波函数表示粒子位置,通过蒙特卡罗方法求出粒子位置。gbest求解通过平均最好位置mbest得到。mbest是所有个体平均最优,通过它来求解粒子出现在相对点的位置,用L表示。而粒子的势表示位置的最终值,与L直接相关。
量子粒子群算法实现(matlab):
popsize=20; %种群规模
MAXITER=2000; %最大迭代次数
dimension=30; %维数
irange_l=-5.12;
irange_r=5.12;
xmax=10; %x的变化范围
sum1=0;
sum2=0;
mean=0;
st=0;
runno=10;
data1=zeros(runno,MAXITER); %10*2000型矩阵
for run=1:runno
T=cputime; %程序开始时间
x=(irange_r- irange_l)*rand(popsize,dimension,1) + irange_l; %初始化种群,将x的范围映射到[-5.12,5.12]空间内
pbest=x; %个体极值
gbest=zeros(1,dimension); %全局极值
for i=1:popsize
f_x(i)=f3(x(i,:)); %更新个体极值,f3是什么函数
f_pbest(i)=f_x(i);
end
g=min(find(f_pbest==min(f_pbest(1:popsize)))); %更新全局极值
gbest=pbest(g,:);
f_gbest=f_pbest(g);
MINIUM=f_pbest(g);
for t=1:MAXITER
beta=(1-0.5)*(MAXITER-t)/MAXITER+0.5; %学习系数
mbest=sum(pbest)/popsize;
for i=1:popsize
fi=rand(1,dimension);
p=fi.*pbest(i,:)+(1-fi).*gbest;
u=rand(1,dimension);
b=beta*(mbest-x(i,:));
v=-log(u);
y=p+((-1).^ceil(0.5+rand(1,dimension))).*b.*v;
x(i,:)=y;
x(i,:)=sign(y).*min(abs(y),xmax);
f_x(i)=f3(x(i,:));
if f_x(i)<f_pbest(i)
pbest(i,:)=x(i,:);
f_pbest(i)=f_x(i);
end
if f_pbest(i)<f_gbest
gbest=pbest(i,:);
f_gbest=f_pbest(i);
end
MINIUM=f_gbest;
end
data1(run,t)=MINIUM;
if MINIUM>1e-007
mean=t;
end
end
sum1=sum1+mean;
sum2=sum2+MINIUM;
%MINIUM
time=cputime-T;
st=st+time;
end
av1=sum1/10; %输出平均收验代数
av2=sum2/10; %输出平均最优解
st/10 %就是最后anw输出的解
参考:
http://www.doc88.com/p-899573226708.html
http://download.csdn.net/download/cxjy329432120/4370945