以下代码大部分直接搬运自Mark Allen 的数据结构与算法分析, 略有改动。
鉴于书本及示例代码均未提及删除操作, 在此提供一种思路。
头文件:
//avltree.h
typedef int ElementType;
#ifndef _AVLTREE_H_
#define _AVLTREE_H_
struct AvlNode;
typedef AvlNode * AvlTree;
typedef AvlNode * Position;
AvlTree CreateAvlTree(void);
AvlTree MakeEmpty(AvlTree T);
Position Find(ElementType X, AvlTree T);
Position FindMin(AvlTree T);
Position FindMax(AvlTree T);
AvlTree Insert(ElementType X, AvlTree T);
AvlTree Delete(ElementType X, AvlTree T);
ElementType Retrieve(Position P);
#endif // _AVLTREE_H_
实现:
//avltree.c
#include<stdlib.h>
#include"avltree.h"
#include"fatal.h"
struct AvlNode{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};
static int Height(Position P)
{
if (P == NULL)
return -1;
else
return P->Height;
}
static int Max(int Lhs, int Rhs)
{
return Lhs > Rhs ? Lhs : Rhs;
}
static AvlTree SingleRotateWithLeft(Position K2)
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = Max(Height(K1->Left), K2->Height) + 1;
return K1;
}
static AvlTree SingleRotateWithRight(Position K2)
{
Position K1;
K1 = K2->Right;
K2->Right = K1->Left;
K1->Left = K2;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = Max(Height(K1->Right), K2->Height) + 1;
return K1;
}
static AvlTree DoubleRotateWithLeft(Position K3)
{
SingleRotateWithRight(K3->Left);
return SingleRotateWithLeft(K3);
}
static AvlTree DoubleRotateWithRight(Position K3)
{
SingleRotateWithLeft(K3->Right);
return SingleRotateWithRight(K3);
}
AvlTree CreateAvlTree(void)
{
return NULL;
}
AvlTree MakeEmpty(AvlTree T)
{
if (T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
Position Find(ElementType X, AvlTree T)
{
if (T == NULL)
return NULL;
if (X < T->Element)
return Find(X, T->Left);
else if (X > T->Element)
return Find(X, T->Right);
else
return T;
}
Position FindMin(AvlTree T)
{
if (T != NULL)
while (T->Left != NULL)
T = T->Left;
return T;
}
Position FindMax(AvlTree T)
{
if (T != NULL)
while (T->Right != NULL)
T = T->Right;
return T;
}
ElementType Retrieve(Position P)
{
return P->Element;
}
AvlTree Insert(ElementType X, AvlTree T)
{
if (T == NULL)
{
T = malloc(sizeof(struct AvlNode));
if (T == NULL)
Error("Out of space");
T->Element = X;
T->Left = T->Right = NULL;
T->Height = 0;
}
else if (X < T->Element)
{
T->Left = Insert(X, T->Left);
if (Height(T->Left) - Height(T->Right) == 2)
if (X < T->Left->Element)
SingleRotateWithLeft(T);
else
DoubleRotateWithLeft(T);
}
else if (X > T->Element)
{
T->Right = Insert(X, T->Right);
if (Height(T->Right) - Height(T->Left) == 2)
if (X > T->Right->Element)
SingleRotateWithRight(T);
else
DoubleRotateWithRight(T);
}
T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
return T;
}
/*以下为删除操作*/
static AvlTree DeleteNode(AvlTree T, Position P)
{
if (P == NULL)
{
P = T->Left;
free(T);
return P;
}
if (P->Left == NULL)
{
P->Left = T->Left;
free(T);
if (Height(P->Left) - Height(P->Right) == 2)
if (Height(P->Left->Left) - Height(P->Right) == 1)
P = SingleRotateWithLeft(P);
else
P = DoubleRotateWithLeft(P);
return P;
}
if (P->Left->Left == NULL)
{
P->Left->Left = T->Left;
P->Left->Right = T->Right;
free(T);
return P;
}
else
{
T = DeleteNode(T, P->Left);
if (Height(P->Right) - Height(P->Left) == 2)
if (Height(P->Right->Right) - Height(P->Left) == 1)
P = SingleRotateWithRight(P);
else
P = DoubleRotateWithRight(P);
P->Height = Max(Height(P->Left), Height(P->Right)) + 1;
return T;
}
}
AvlTree Delete(ElementType X, AvlTree T)
{
if (T == NULL)
return NULL;
if (X < T->Element)
{
if (T->Left = Delete(X, T->Left) == NULL)
return NULL;
if (Height(T->Right) - Height(T->Left) == 2)
if (Height(T->Right->Right) - Height(T->Left) == 1)
T = SingleRotateWithRight(T);
else
T = DoubleRotateWithRight(T);
T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
}
else if (X > T->Element)
{
if (T->Right = Delete(X, T->Right) == NULL)
return NULL;
if (Height(T->Left) - Height(T->Right) == 2)
if (Height(T->Left->Left) - Height(T->Right) == 1)
T = SingleRotateWithLeft(T);
else
T = DoubleRotateWithLeft(T);
T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
}
else if (X == T->Element)
{
return DeleteNode(T, T->Right);
}
return T;
}