AVL树特点平衡的二叉搜索树,每个节点的左子树和右子树高度最多差1
AVL树声明
#ifndef _AvlTree_H
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
AvlTree MakeEmpty(AvlTree T);
Position Find(int X, AvlTree T);
Position FindMin(AvlTree T);
Position FindMax(AvlTree T);
AvlTree Insert(int X, AvlTree T);
AvlTree Delete(int X, AvlTree T);
int Retrieve(Position P);
/* 打印树 */
void PrintTree(AvlTree T);
#endif
AVL树实现
#include <stdio.h> // for stderr
#include <stdlib.h> // for NULL
#include "AvlTree.h"
/* AVL树节点声明 */
struct AvlNode
{
int Element;
AvlTree Left;
AvlTree Right;
int Height;
};
/* 计算AVL节点的高度 */
static int Height(Position P)
{
if(P == NULL)
return -1;
else
return P->Height;
}
/* 创建一棵空树 */
AvlTree MakeEmpty(AvlTree T)
{
if(T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
/* 查找某个节点 */
Position Find(int X, AvlTree T)
{
if(T == NULL)
return NULL;
if(X < T->Element)
return Find(X, T->Left);
else if(X > T->Element)
return Find(X, T->Right);
else
return T;
}
/* 查找二叉树最小节点 递归实现 */
Position FindMin(AvlTree T)
{
if(T == NULL)
return NULL;
else if(T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
/* 查找二叉树最大节点 非递归实现 */
Position FindMax(AvlTree T)
{
if(T != NULL)
while(T->Right != NULL)
T = T->Right;
return T;
}
/* 返回2个数中大的值 */
static int Max(int A, int B)
{
return A > B ? A : B;
}
/* 左单旋转 */
static Position SingleRotateWithLeft(Position K2)
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
return K1;
}
/* 右单旋转 */
static Position SingleRotateWithRight(Position K2)
{
Position K1;
K1 = K2->Right;
K2->Right = K1->Left;
K1->Left = K2;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
return K1;
}
/* 左双旋转 */
static Position DoubleRotateWithLeft(Position K3)
{
/* 在K1, K2间旋转 */
K3->Left = SingleRotateWithRight(K3->Left);
/* 在K3, K2间旋转 */
return SingleRotateWithLeft(K3);
}
/* 右双旋转 */
static Position DoubleRotateWithRight(Position K3)
{
/* 在K1, K2间旋转 */
K3->Right = SingleRotateWithLeft(K3->Right);
/* 在K3, K2间旋转 */
return SingleRotateWithRight(K3);
}
/* 向AVL树插入节点 */
AvlTree Insert(int X, AvlTree T)
{
if(T == NULL)
{
/* 创建并返回带有一个节点的树 */
T = malloc(sizeof(struct AvlNode));
if(T == NULL)
fprintf(stderr, "Out of space!!");
else
{
T->Element = X;
T->Height = 0;
T->Left = T->Right = NULL;
}
}
else if(X < T->Element)
{
T->Left = Insert(X, T->Left);
if(Height(T->Left) - Height(T->Right) == 2)
if(X < T->Left->Element)
T = SingleRotateWithLeft(T);
else
T = DoubleRotateWithLeft(T);
}
else if(X > T->Element)
{
T->Right = Insert(X, T->Right);
if(Height(T->Right) - Height(T->Left) == 2)
if(X > T->Right->Element)
T = SingleRotateWithRight(T);
else
T = DoubleRotateWithRight(T);
}
/* 如果X已经存在,啥也不做 */
T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
return T;
}
/* 删除节点比较复杂,如果删除次数比较少,可以使用懒得删除法,把被删除的节点标示为已删除,而不真正把它从树中删除 */
AvlTree Delete(int X, AvlTree T)
{
}
/* 取某个节点的值 */
int Retrieve(Position P)
{
return P->Element;
}
/* 使用中序遍历打印树 */
void PrintTree(AvlTree T)
{
if(T != NULL)
{
PrintTree(T->Left);
printf("%d ", T->Element);
PrintTree(T->Right);
}
}
测试AVL树
#include <stdio.h>
#include "AvlTree.h"
int main(void)
{
AvlTree tree = NULL;
tree = Insert(10, tree);
PrintTree(tree);
printf("\n");
tree = Insert(8, tree);
PrintTree(tree);
printf("\n");
tree = Insert(12, tree);
PrintTree(tree);
printf("\n");
tree = Insert(7, tree);
tree = Insert(6, tree);
tree = Insert(5, tree);
PrintTree(tree);
printf("\n");
tree = Insert(98, tree);
tree = Insert(100, tree);
tree = Insert(111, tree);
tree = Insert(112, tree);
tree = Insert(113, tree);
tree = Insert(114, tree);
tree = Insert(115, tree);
PrintTree(tree);
printf("\n");
return 0;
}