1. 简单非线性关系数据集测试(XOR):
X: Y
0 0 0
0 1 1
1 0 1
1 1 0
Code:
from NeuralNetwork import NeuralNetwork
import numpy as np
nn = NeuralNetwork([2,2,1], ‘tanh’)
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
print(i, nn.predict(i))
2. 手写数字识别:
每个图片8×8
识别数字:0,1,2,3,4,5,6,7,8,9
Code:
import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from NeuralNetwork import NeuralNetwork
from sklearn.cross_validation import train_test_split
digits = load_digits()
X = digits.data
y = digits.target
X -= X.min() # normalize the values to bring them into the range 0-1
X /= X.max()
nn = NeuralNetwork([64,100,10],’logistic’)
X_train, X_test, y_train, y_test = train_test_split(X, y)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print “start fitting”
nn.fit(X_train,labels_train,epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
o = nn.predict(X_test[i] )
predictions.append(np.argmax(o))
print confusion_matrix(y_test,predictions)
print classification_report(y_test,predictions)