百度无人驾驶apollo项目驾驶行为决策模块深度神经网络算法模型
apollo这一快没提供,可以使用以下的算法模型
learning_rate = 1e-4
activation_relu = ‘relu’
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 – 1.0, input_shape=(64, 64, 3)))
model.add(Convolution2D(24, 5, 5, border_mode=‘same’, subsample=(2, 2)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(36, 5, 5, border_mode=‘same’, subsample=(2, 2)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(48, 5, 5, border_mode=‘same’, subsample=(2, 2)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(64, 3, 3, border_mode=‘same’, subsample=(1, 1)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Convolution2D(64, 3, 3, border_mode=‘same’, subsample=(1, 1)))
model.add(Activation(activation_relu))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1)))
model.add(Flatten())
model.add(Dense(1164))
model.add(Activation(activation_relu))
model.add(Dense(100))
model.add(Activation(activation_relu))
model.add(Dense(50))
model.add(Activation(activation_relu))
model.add(Dense(10))
model.add(Activation(activation_relu))
model.add(Dense(1))
model.summary()
model.compile(optimizer=Adam(learning_rate), loss=“mse”, )
模型基于keras,后台使用tensorflow