1. 关于非线性转化方程(non-linear transformation function)
sigmoid函数(S 曲线)用来作为activation function:
1.1 双曲函数(tanh)
1.2 逻辑函数(logistic function)
2. 实现一个简单的神经网络算法
import numpy as np
def tanh(x):
return np.tanh(x)
def tanh_deriv(x):
return 1.0-np.tanh(x)*np.tanh(x)
def logistic(x):
return 1/(1+np.exp(-x))
def logistic_derivative(x):
return logistic(x)*(1-logistic(x))
class NeuralNetwork:
def __init__(self,layers,activation='tanh'):
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
self.weights = []
for i in range(1,len(layers)-1):
self.weights.append((2*np.random.random((layers[i-1]+1,layers[i]+1))-1)*0.25)
self.weights.append((2*np.random.random((layers[i]+1,layers[i+1]))-1)*0.25)
def fit(self,X,y,learning_rate=0.2,epochs=10000):
X = np.atleast_2d(X)
temp = np.ones([X.shape[0],X.shape[1]+1])
temp[:,0:-1] = X
X = temp
y = np.array(y)
for k in range(epochs):
i = np.random.randint(X.shape[0])
a = [X[i]]
for l in range(len(self.weights)):
a.append(self.activation(np.dot(a[l],self.weights[l])))
error = y[i] - a[-1]
deltas = [error*self.activation_deriv(a[-1])]
for l in range(len(a)-2,0,-1):
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate*layer.T.dot(delta)
def predict(self,x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0,len(self.weights)):
a = self.activation(np.dot(a,self.weights[l]))
return a