import numpy as npy def tanh(x): return npy.tanh(x) def tanh_deriv(x): return 1.0-npy.tanh(x)**2 def logistic(x): return 1/(1+npy.exp(-x)) def logistic_deriv(x): return logistic(x)*(1-logistic(x)) class NeuralNetwork: # 初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元 def __init__(self,layers,activation="tanh"): if(activation=="logistic"): self.activation=logistic self.activation_deriv=logistic_deriv elif(activation=="tanh"): self.activation=tanh self.activation_deriv=tanh_deriv self.weight=[] # 循环从1开始,相当于以第二层为基准,进行权重的初始化 for i in range(1,len(layers)-1): # 对当前神经节点的前驱赋值 self.weight.append((2*npy.random.random((layers[i-1]+1,layers[i]+1))-1)*0.25) self.weight.append((2*npy.random.random((layers[i]+1,layers[i+1]))-1)*0.25) # 训练函数 ,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率 # epochs,表示抽样的方法对神经网络进行更新的最大次数 def fit(self,X,y,learning_rete=0.2,epochs=10000): X=npy.atleast_2d(X) temp=npy.ones([X.shape[0],X.shape[1]+1]) temp[:,0:-1]=X X=temp y=npy.array(y) for k in range(epochs): i=npy.random.randint(X.shape[0]) a=[X[i]] for l in range(len(self.weight)): a.append(self.activation(npy.dot(a[l],self.weight[l]))) error=y[i]-a[-1] deltas=[error-self.activation_deriv(a[-1])] # 开始反向计算误差,更新权重 for l in range(len(a)-2,0,-1): deltas.append(deltas[-l].dot(self.weight[l].T)*self.activation_deriv(a[l])) deltas.reverse() for i in range(len(self.weight)): layer=npy.atleast_2d(a[i]) delta=npy.atleast_2d(deltas[i]) self.weight[i]+=learning_rete*layer.T.dot(delta) # 预测函数 def predict(self,x): x=npy.array(x) temp=npy.ones(x.shape[0]+1) temp[0:-1]=x a=temp for l in range(0,len(self.weight)): a=self.activation(npy.dot(a,self.weight[l])) return a x=npy.array([[0,0],[0,1],[1,0],[1,1]]) y=npy.array([1,0,0,1]) nn=NeuralNetwork([2,2,1],"tanh") nn.fit(x,y) for i in x: print(i,nn.predict(i))
神经网络算法实现
原文作者:神经网络算法
原文地址: https://blog.csdn.net/weixin_41789633/article/details/79714754
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/weixin_41789633/article/details/79714754
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。