import java.util.*;
public class Tsp {
private String cityName[] = { "北京", "上海", "天津", "重庆", "哈尔滨", "长春", "沈阳",
"呼和浩特", "石家庄", "太原", "济南", "郑州", "西安", "兰州", "银川", "西宁", "乌鲁木齐",
"合肥", "南京", "杭州", "长沙", "南昌", "武汉", "成都", "贵州", "福建", "台北", "广州",
"海口", "南宁", "昆明", "拉萨", "香港", "澳门" };
// private String cityEnd[]=new String[34];
private int cityNum = cityName.length; // 城市个数
private int popSize = 50; // 种群数量
private int maxgens = 20000; // 迭代次数
private double pxover = 0.8; // 交叉概率
private double pmultation = 0.05; // 变异概率
private long[][] distance = new long[cityNum][cityNum];
private int range = 2000; // 用于判断何时停止的数组区间
private class genotype {
int city[] = new int[cityNum]; // 单个基因的城市序列
long fitness; // 该基因的适应度
double selectP; // 选择概率
double exceptp; // 期望概率
int isSelected; // 是否被选择
}
private genotype[] citys = new genotype[popSize];
/**
* 构造函数,初始化种群
*/
public Tsp() {
for (int i = 0; i < popSize; i++) {
citys[i] = new genotype();
int[] num = new int[cityNum];
for (int j = 0; j < cityNum; j++)
num[j] = j;
int temp = cityNum;
for (int j = 0; j < cityNum; j++) {
int r = (int) (Math.random() * temp);
citys[i].city[j] = num[r];
num[r] = num[temp - 1];
temp--;
}
citys[i].fitness = 0;
citys[i].selectP = 0;
citys[i].exceptp = 0;
citys[i].isSelected = 0;
}
initDistance();
}
/**
* 计算每个种群每个基因个体的适应度,选择概率,期望概率,和是否被选择。
*/
public void CalAll() {
for (int i = 0; i < popSize; i++) {
citys[i].fitness = 0;
citys[i].selectP = 0;
citys[i].exceptp = 0;
citys[i].isSelected = 0;
}
CalFitness();
CalSelectP();
CalExceptP();
CalIsSelected();
}
/**
* 填充,将多选的填充到未选的个体当中
*/
public void pad() {
int best = 0;
int bad = 0;
while (true) {
while (citys[best].isSelected <= 1 && best < popSize - 1)
best++;
while (citys[bad].isSelected != 0 && bad < popSize - 1)
bad++;
for (int i = 0; i < cityNum; i++)
citys[bad].city[i] = citys[best].city[i];
citys[best].isSelected--;
citys[bad].isSelected++;
bad++;
if (best == popSize || bad == popSize)
break;
}
}
/**
* 交叉主体函数
*/
public void crossover() {
int x;
int y;
int pop = (int) (popSize * pxover / 2);
while (pop > 0) {
x = (int) (Math.random() * popSize);
y = (int) (Math.random() * popSize);
executeCrossover(x, y);// x y 两个体执行交叉
pop--;
}
}
/**
* 执行交叉函数
*
* @param 个体x
* @param 个体y
* 对个体x和个体y执行佳点集的交叉,从而产生下一代城市序列
*/
private void executeCrossover(int x, int y) {
int dimension = 0;
for (int i = 0; i < cityNum; i++)
if (citys[x].city[i] != citys[y].city[i]) {
dimension++;
}
int diffItem = 0;
double[] diff = new double[dimension];
for (int i = 0; i < cityNum; i++) {
if (citys[x].city[i] != citys[y].city[i]) {
diff[diffItem] = citys[x].city[i];
citys[x].city[i] = -1;
citys[y].city[i] = -1;
diffItem++;
}
}
Arrays.sort(diff);
double[] temp = new double[dimension];
temp = gp(x, dimension);
for (int k = 0; k < dimension; k++)
for (int j = 0; j < dimension; j++)
if (temp[j] == k) {
double item = temp[k];
temp[k] = temp[j];
temp[j] = item;
item = diff[k];
diff[k] = diff[j];
diff[j] = item;
}
int tempDimension = dimension;
int tempi = 0;
while (tempDimension > 0) {
if (citys[x].city[tempi] == -1) {
citys[x].city[tempi] = (int) diff[dimension - tempDimension];
tempDimension--;
}
tempi++;
}
Arrays.sort(diff);
temp = gp(y, dimension);
for (int k = 0; k < dimension; k++)
for (int j = 0; j < dimension; j++)
if (temp[j] == k) {
double item = temp[k];
temp[k] = temp[j];
temp[j] = item;
item = diff[k];
diff[k] = diff[j];
diff[j] = item;
}
tempDimension = dimension;
tempi = 0;
while (tempDimension > 0) {
if (citys[y].city[tempi] == -1) {
citys[y].city[tempi] = (int) diff[dimension - tempDimension];
tempDimension--;
}
tempi++;
}
}
/**
* @param individual
* 个体
* @param dimension
* 维数
* @return 佳点集 (用于交叉函数的交叉点) 在executeCrossover()函数中使用
*/
private double[] gp(int individual, int dimension) {
double[] temp = new double[dimension];
double[] temp1 = new double[dimension];
int p = 2 * dimension + 3;
while (!isSushu(p))
p++;
for (int i = 0; i < dimension; i++) {
temp[i] = 2 * Math.cos(2 * Math.PI * (i + 1) / p)
* (individual + 1);
temp[i] = temp[i] - (int) temp[i];
if (temp[i] < 0)
temp[i] = 1 + temp[i];
}
for (int i = 0; i < dimension; i++)
temp1[i] = temp[i];
Arrays.sort(temp1);
// 排序
for (int i = 0; i < dimension; i++)
for (int j = 0; j < dimension; j++)
if (temp[j] == temp1[i])
temp[j] = i;
return temp;
}
/**
* 变异
*/
public void mutate() {
double random;
int temp;
int temp1;
int temp2;
for (int i = 0; i < popSize; i++) {
random = Math.random();
if (random <= pmultation) {
temp1 = (int) (Math.random() * (cityNum));
temp2 = (int) (Math.random() * (cityNum));
temp = citys[i].city[temp1];
citys[i].city[temp1] = citys[i].city[temp2];
citys[i].city[temp2] = temp;
}
}
}
/**
* 打印当前代数的所有城市序列,以及其相关的参数
*/
public void print() {
/**
* 初始化各城市之间的距离
*/
}
private void initDistance() {
for (int i = 0; i < cityNum; i++) {
for (int j = 0; j < cityNum; j++) {
distance[i][j] = Math.abs(i - j);
}
}
}
/**
* 计算所有城市序列的适应度
*/
private void CalFitness() {
for (int i = 0; i < popSize; i++) {
for (int j = 0; j < cityNum - 1; j++)
citys[i].fitness += distance[citys[i].city[j]][citys[i].city[j + 1]];
citys[i].fitness += distance[citys[i].city[0]][citys[i].city[cityNum - 1]];
}
}
/**
* 计算选择概率
*/
private void CalSelectP() {
long sum = 0;
for (int i = 0; i < popSize; i++)
sum += citys[i].fitness;
for (int i = 0; i < popSize; i++)
citys[i].selectP = (double) citys[i].fitness / sum;
}
/**
* 计算期望概率
*/
private void CalExceptP() {
for (int i = 0; i < popSize; i++)
citys[i].exceptp = (double) citys[i].selectP * popSize;
}
/**
* 计算该城市序列是否较优,较优则被选择,进入下一代
*/
private void CalIsSelected() {
int needSelecte = popSize;
for (int i = 0; i < popSize; i++)
if (citys[i].exceptp < 1) {
citys[i].isSelected++;
needSelecte--;
}
double[] temp = new double[popSize];
for (int i = 0; i < popSize; i++) {
// temp[i] = citys[i].exceptp - (int) citys[i].exceptp;
// temp[i] *= 10;
temp[i] = citys[i].exceptp * 10;
}
int j = 0;
while (needSelecte != 0) {
for (int i = 0; i < popSize; i++) {
if ((int) temp[i] == j) {
citys[i].isSelected++;
needSelecte--;
if (needSelecte == 0)
break;
}
}
j++;
}
}
/**
* @param x
* @return 判断一个数是否是素数的函数
*/
private boolean isSushu(int x) {
if (x < 2)
return false;
for (int i = 2; i <= x / 2; i++)
if (x % i == 0 && x != 2)
return false;
return true;
}
/**
* @param x
* 数组
* @return x数组的值是否全部相等,相等则表示x.length代的最优结果相同,则算法结束
*/
private boolean isSame(long[] x) {
for (int i = 0; i < x.length - 1; i++)
if (x[i] != x[i + 1])
return false;
return true;
}
/**
* 打印任意代最优的路径序列
*/
private void printBestRoute() {
CalAll();
long temp = citys[0].fitness;
int index = 0;
for (int i = 1; i < popSize; i++) {
if (citys[i].fitness < temp) {
temp = citys[i].fitness;
index = i;
}
}
System.out.println();
System.out.println("最佳路径的序列:");
for (int j = 0; j < cityNum; j++) {
String cityEnd[] = { cityName[citys[index].city[j]] };
for (int m = 0; m < cityEnd.length; m++) {
System.out.print(cityEnd[m] + " ");
}
}
// System.out.print(citys[index].city[j] +
// cityName[citys[index].city[j]] + " ");
// System.out.print(cityName[citys[index].city[j]]);
System.out.println();
}
/**
* 算法执行
*/
public void run() {
long[] result = new long[range];
// result初始化为所有的数字都不相等
for (int i = 0; i < range; i++)
result[i] = i;
int index = 0; // 数组中的位置
int num = 1; // 第num代
while (maxgens > 0) {
System.out.println("----------------- 第 " + num
+ " 代 -------------------------");
CalAll();
print();
pad();
crossover();
mutate();
maxgens--;
long temp = citys[0].fitness;
for (int i = 1; i < popSize; i++)
if (citys[i].fitness < temp) {
temp = citys[i].fitness;
}
System.out.println("最优的解:" + temp);
result[index] = temp;
if (isSame(result))
break;
index++;
if (index == range)
index = 0;
num++;
}
printBestRoute();
}
/**
* @param a
* 开始时间
* @param b
* 结束时间
*/
public void CalTime(Calendar a, Calendar b) {
long x = b.getTimeInMillis() - a.getTimeInMillis();
long y = x / 1000;
x = x - 1000 * y;
System.out.println("算法执行时间:" + y + "." + x + " 秒");
}
/**
* 程序入口
*/
public static void main(String[] args) {
Calendar a = Calendar.getInstance(); // 开始时间
Tsp tsp = new Tsp();
tsp.run();
Calendar b = Calendar.getInstance(); // 结束时间
tsp.CalTime(a, b);
}
}
遗传算法--代码
原文作者:遗传算法
原文地址: https://blog.csdn.net/lulin27861/article/details/19076361
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
原文地址: https://blog.csdn.net/lulin27861/article/details/19076361
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。