遗传算法--代码

import java.util.*;

public class Tsp {
	private String cityName[] = { "北京", "上海", "天津", "重庆", "哈尔滨", "长春", "沈阳",
			"呼和浩特", "石家庄", "太原", "济南", "郑州", "西安", "兰州", "银川", "西宁", "乌鲁木齐",
			"合肥", "南京", "杭州", "长沙", "南昌", "武汉", "成都", "贵州", "福建", "台北", "广州",
			"海口", "南宁", "昆明", "拉萨", "香港", "澳门" };
	// private String cityEnd[]=new String[34];
	private int cityNum = cityName.length; // 城市个数
	private int popSize = 50; // 种群数量
	private int maxgens = 20000; // 迭代次数
	private double pxover = 0.8; // 交叉概率
	private double pmultation = 0.05; // 变异概率
	private long[][] distance = new long[cityNum][cityNum];
	private int range = 2000; // 用于判断何时停止的数组区间

	private class genotype {
		int city[] = new int[cityNum]; // 单个基因的城市序列
		long fitness; // 该基因的适应度
		double selectP; // 选择概率
		double exceptp; // 期望概率
		int isSelected; // 是否被选择
	}

	private genotype[] citys = new genotype[popSize];

	/**
	 * 构造函数,初始化种群
	 */
	public Tsp() {
		for (int i = 0; i < popSize; i++) {
			citys[i] = new genotype();
			int[] num = new int[cityNum];
			for (int j = 0; j < cityNum; j++)
				num[j] = j;
			int temp = cityNum;
			for (int j = 0; j < cityNum; j++) {
				int r = (int) (Math.random() * temp);
				citys[i].city[j] = num[r];
				num[r] = num[temp - 1];
				temp--;
			}
			citys[i].fitness = 0;
			citys[i].selectP = 0;
			citys[i].exceptp = 0;
			citys[i].isSelected = 0;
		}
		initDistance();
	}

	/**
	 * 计算每个种群每个基因个体的适应度,选择概率,期望概率,和是否被选择。
	 */
	public void CalAll() {
		for (int i = 0; i < popSize; i++) {
			citys[i].fitness = 0;
			citys[i].selectP = 0;
			citys[i].exceptp = 0;
			citys[i].isSelected = 0;
		}
		CalFitness();
		CalSelectP();
		CalExceptP();
		CalIsSelected();
	}

	/**
	 * 填充,将多选的填充到未选的个体当中
	 */
	public void pad() {
		int best = 0;
		int bad = 0;
		while (true) {
			while (citys[best].isSelected <= 1 && best < popSize - 1)
				best++;
			while (citys[bad].isSelected != 0 && bad < popSize - 1)
				bad++;
			for (int i = 0; i < cityNum; i++)
				citys[bad].city[i] = citys[best].city[i];
			citys[best].isSelected--;
			citys[bad].isSelected++;
			bad++;
			if (best == popSize || bad == popSize)
				break;
		}
	}

	/**
	 * 交叉主体函数
	 */
	public void crossover() {
		int x;
		int y;
		int pop = (int) (popSize * pxover / 2);
		while (pop > 0) {
			x = (int) (Math.random() * popSize);
			y = (int) (Math.random() * popSize);
			executeCrossover(x, y);// x y 两个体执行交叉
			pop--;
		}
	}

	/**
	 * 执行交叉函数
	 * 
	 * @param 个体x
	 * @param 个体y
	 *            对个体x和个体y执行佳点集的交叉,从而产生下一代城市序列
	 */
	private void executeCrossover(int x, int y) {
		int dimension = 0;
		for (int i = 0; i < cityNum; i++)
			if (citys[x].city[i] != citys[y].city[i]) {
				dimension++;
			}
		int diffItem = 0;
		double[] diff = new double[dimension];
		for (int i = 0; i < cityNum; i++) {
			if (citys[x].city[i] != citys[y].city[i]) {
				diff[diffItem] = citys[x].city[i];
				citys[x].city[i] = -1;
				citys[y].city[i] = -1;
				diffItem++;
			}
		}
		Arrays.sort(diff);
		double[] temp = new double[dimension];
		temp = gp(x, dimension);
		for (int k = 0; k < dimension; k++)
			for (int j = 0; j < dimension; j++)
				if (temp[j] == k) {
					double item = temp[k];
					temp[k] = temp[j];
					temp[j] = item;
					item = diff[k];
					diff[k] = diff[j];
					diff[j] = item;
				}
		int tempDimension = dimension;
		int tempi = 0;
		while (tempDimension > 0) {
			if (citys[x].city[tempi] == -1) {
				citys[x].city[tempi] = (int) diff[dimension - tempDimension];
				tempDimension--;
			}
			tempi++;
		}
		Arrays.sort(diff);
		temp = gp(y, dimension);
		for (int k = 0; k < dimension; k++)
			for (int j = 0; j < dimension; j++)
				if (temp[j] == k) {
					double item = temp[k];
					temp[k] = temp[j];
					temp[j] = item;
					item = diff[k];
					diff[k] = diff[j];
					diff[j] = item;
				}
		tempDimension = dimension;
		tempi = 0;
		while (tempDimension > 0) {
			if (citys[y].city[tempi] == -1) {
				citys[y].city[tempi] = (int) diff[dimension - tempDimension];
				tempDimension--;
			}
			tempi++;
		}
	}

	/**
	 * @param individual
	 *            个体
	 * @param dimension
	 *            维数
	 * @return 佳点集 (用于交叉函数的交叉点) 在executeCrossover()函数中使用
	 */
	private double[] gp(int individual, int dimension) {
		double[] temp = new double[dimension];
		double[] temp1 = new double[dimension];
		int p = 2 * dimension + 3;
		while (!isSushu(p))
			p++;
		for (int i = 0; i < dimension; i++) {
			temp[i] = 2 * Math.cos(2 * Math.PI * (i + 1) / p)
					* (individual + 1);
			temp[i] = temp[i] - (int) temp[i];
			if (temp[i] < 0)
				temp[i] = 1 + temp[i];
		}
		for (int i = 0; i < dimension; i++)
			temp1[i] = temp[i];
		Arrays.sort(temp1);
		// 排序
		for (int i = 0; i < dimension; i++)
			for (int j = 0; j < dimension; j++)
				if (temp[j] == temp1[i])
					temp[j] = i;
		return temp;
	}

	/**
	 * 变异
	 */
	public void mutate() {
		double random;
		int temp;
		int temp1;
		int temp2;
		for (int i = 0; i < popSize; i++) {
			random = Math.random();
			if (random <= pmultation) {
				temp1 = (int) (Math.random() * (cityNum));
				temp2 = (int) (Math.random() * (cityNum));
				temp = citys[i].city[temp1];
				citys[i].city[temp1] = citys[i].city[temp2];
				citys[i].city[temp2] = temp;
			}
		}
	}

	/**
	 * 打印当前代数的所有城市序列,以及其相关的参数
	 */
	public void print() {
		/**
		 * 初始化各城市之间的距离
		 */
	}

	private void initDistance() {
		for (int i = 0; i < cityNum; i++) {
			for (int j = 0; j < cityNum; j++) {
				distance[i][j] = Math.abs(i - j);
			}
		}
	}

	/**
	 * 计算所有城市序列的适应度
	 */
	private void CalFitness() {
		for (int i = 0; i < popSize; i++) {
			for (int j = 0; j < cityNum - 1; j++)
				citys[i].fitness += distance[citys[i].city[j]][citys[i].city[j + 1]];
			citys[i].fitness += distance[citys[i].city[0]][citys[i].city[cityNum - 1]];
		}
	}

	/**
	 * 计算选择概率
	 */
	private void CalSelectP() {
		long sum = 0;
		for (int i = 0; i < popSize; i++)
			sum += citys[i].fitness;
		for (int i = 0; i < popSize; i++)
			citys[i].selectP = (double) citys[i].fitness / sum;
	}

	/**
	 * 计算期望概率
	 */
	private void CalExceptP() {
		for (int i = 0; i < popSize; i++)
			citys[i].exceptp = (double) citys[i].selectP * popSize;
	}

	/**
	 * 计算该城市序列是否较优,较优则被选择,进入下一代
	 */
	private void CalIsSelected() {
		int needSelecte = popSize;
		for (int i = 0; i < popSize; i++)
			if (citys[i].exceptp < 1) {
				citys[i].isSelected++;
				needSelecte--;
			}
		double[] temp = new double[popSize];
		for (int i = 0; i < popSize; i++) {
			// temp[i] = citys[i].exceptp - (int) citys[i].exceptp;
			// temp[i] *= 10;
			temp[i] = citys[i].exceptp * 10;
		}
		int j = 0;
		while (needSelecte != 0) {
			for (int i = 0; i < popSize; i++) {
				if ((int) temp[i] == j) {
					citys[i].isSelected++;
					needSelecte--;
					if (needSelecte == 0)
						break;
				}
			}
			j++;
		}
	}

	/**
	 * @param x
	 * @return 判断一个数是否是素数的函数
	 */
	private boolean isSushu(int x) {
		if (x < 2)
			return false;
		for (int i = 2; i <= x / 2; i++)
			if (x % i == 0 && x != 2)
				return false;
		return true;
	}

	/**
	 * @param x
	 *            数组
	 * @return x数组的值是否全部相等,相等则表示x.length代的最优结果相同,则算法结束
	 */
	private boolean isSame(long[] x) {
		for (int i = 0; i < x.length - 1; i++)
			if (x[i] != x[i + 1])
				return false;
		return true;
	}

	/**
	 * 打印任意代最优的路径序列
	 */
	private void printBestRoute() {
		CalAll();
		long temp = citys[0].fitness;
		int index = 0;
		for (int i = 1; i < popSize; i++) {
			if (citys[i].fitness < temp) {
				temp = citys[i].fitness;
				index = i;
			}
		}
		System.out.println();
		System.out.println("最佳路径的序列:");
		for (int j = 0; j < cityNum; j++) {
			String cityEnd[] = { cityName[citys[index].city[j]] };
			for (int m = 0; m < cityEnd.length; m++) {
				System.out.print(cityEnd[m] + " ");
			}
		}
		// System.out.print(citys[index].city[j] +
		// cityName[citys[index].city[j]] + " ");
		// System.out.print(cityName[citys[index].city[j]]);
		System.out.println();
	}

	/**
	 * 算法执行
	 */
	public void run() {
		long[] result = new long[range];
		// result初始化为所有的数字都不相等
		for (int i = 0; i < range; i++)
			result[i] = i;
		int index = 0; // 数组中的位置
		int num = 1; // 第num代
		while (maxgens > 0) {
			System.out.println("----------------- 第 " + num
					+ " 代 -------------------------");
			CalAll();
			print();
			pad();
			crossover();
			mutate();
			maxgens--;
			long temp = citys[0].fitness;
			for (int i = 1; i < popSize; i++)
				if (citys[i].fitness < temp) {
					temp = citys[i].fitness;
				}
			System.out.println("最优的解:" + temp);
			result[index] = temp;
			if (isSame(result))
				break;
			index++;
			if (index == range)
				index = 0;
			num++;
		}
		printBestRoute();
	}

	/**
	 * @param a
	 *            开始时间
	 * @param b
	 *            结束时间
	 */
	public void CalTime(Calendar a, Calendar b) {
		long x = b.getTimeInMillis() - a.getTimeInMillis();
		long y = x / 1000;
		x = x - 1000 * y;
		System.out.println("算法执行时间:" + y + "." + x + " 秒");
	}

	/**
	 * 程序入口
	 */
	public static void main(String[] args) {
		Calendar a = Calendar.getInstance(); // 开始时间
		Tsp tsp = new Tsp();
		tsp.run();
		Calendar b = Calendar.getInstance(); // 结束时间
		tsp.CalTime(a, b);
	}
}

    原文作者:遗传算法
    原文地址: https://blog.csdn.net/lulin27861/article/details/19076361
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞