[转载]遗传算法改进的模糊C-均值聚类MATLAB源码

题目:遗传算法改进的模糊C-均值聚类MATLAB源码

模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最优分类结果。本源码由GreenSim团队原创,转载请注明,有意购买源码或代写相关程序,请与GreenSim团队联系(主页http://blog.sina.com.cn/greensim)。

function [BESTX,BESTY,ALLX,ALLY]=GAFCM(K,N,Pm,LB,UB,D,c,m)
%% 此函数实现遗传算法,用于模糊C-均值聚类
% GreenSim团队原创作品,转载请注明
% Email:greensim@163.com
% GreenSim团队主页:http://blog.sina.com.cn/greensim
% [color=red]欢迎访问GreenSim——算法仿真团队→[url=http://blog.sina.com.cn/greensim]http://blog.sina.com.cn/greensim[/url][/color]
%% 输入参数列表
% K        迭代次数
% N        种群规模,要求是偶数
% Pm       变异概率
% LB       决策变量的下界,M×1的向量
% UB       决策变量的上界,M×1的向量
% D        原始样本数据,n×p的矩阵
% c        分类个数
% m        模糊C均值聚类数学模型中的指数
%% 输出参数列表
% BESTX    K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体
% BESTY    K×1矩阵,记录每一代的最优个体的评价函数值
% ALLX     K×1细胞结构,每一个元素是M×N矩阵,记录全部个体
% ALLY     K×N矩阵,记录全部个体的评价函数值
%% 第一步:
M=length(LB);%决策变量的个数
%种群初始化,每一列是一个样本
farm=zeros(M,N);
for i=1:M
    x=unifrnd(LB(i),UB(i),1,N);
    farm(i,:)=x;
end
%输出变量初始化
ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体
ALLY=zeros(K,N);%K×N矩阵,记录每一代评价函数值
BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体
BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值
k=1;%迭代计数器初始化
%% 第二步:迭代过程
while k<=K
%% 以下是交叉过程
    newfarm=zeros(M,2*N);
    Ser=randperm(N);%两两随机配对的配对表
    A=farm(:,Ser(1));
    B=farm(:,Ser(2));
    P0=unidrnd(M-1);
    a=[A(1:P0,:);B((P0+1):end,:)];%产生子代a
    b=[B(1:P0,:);A((P0+1):end,:)];%产生子代b
    newfarm(:,2*N-1)=a;%加入子代种群
    newfarm(:,2*N)=b;   
    for i=1:(N-1)
        A=farm(:,Ser(i));
        B=farm(:,Ser(i+1));
        P0=unidrnd(M-1);
        a=[A(1:P0,:);B((P0+1):end,:)];
        b=[B(1:P0,:);A((P0+1):end,:)];
        newfarm(:,2*i-1)=a;
        newfarm(:,2*i)=b;
    end   
    FARM=[farm,newfarm];   
%% 选择复制
    SER=randperm(3*N);
    FITNESS=zeros(1,3*N);
    fitness=zeros(1,N);
    for i=1:(3*N)
        Beta=FARM(:,i);
        FITNESS(i)=FIT(Beta,D,c,m);
    end   
    for i=1:N
        f1=FITNESS(SER(3*i-2));
        f2=FITNESS(SER(3*i-1));
        f3=FITNESS(SER(3*i));
        if f1<=f2&&f1<=f3
            farm(:,i)=FARM(:,SER(3*i-2));
            fitness(:,i)=FITNESS(:,SER(3*i-2));
  

    原文作者:遗传算法
    原文地址: https://blog.csdn.net/percyforever/article/details/7353278
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞