在2008年全国大学生数学建模竞赛,学习过matlab遗传算法工具箱求最优解,用得也比较熟练,时隔两年忘得差不多了!现在想用GA工具箱来解决一个优化问题,不得不重新查资料学习使用!
这是一个根据已知数据拟合一个函数,使用最小二乘法作为适应度函数,求最小值
适应度函数如下
function f=zpp(m)
a=[0 49 98 147 196 294 391 489 587 685];
y1=[6.39 9.48 12.46 14.33 17.10 21.94 22.64 21.43 22.07 24.53];
n=size(a,2);%1表示行数,2表是列数
f=0;
for i=1:n
y=m(1)*(a(i)+m(2))/(m(3)+a(i)+m(2));
f=f+((y1(i)-y).^2);
end
这是调用遗传算法工具箱进行最优求解,当然这里只是近似最优,也有可能得不到精确的最优解,所以当得不到最优解时可以多次迭代!
option=gaoptimset(‘PopulationSize’,100,’Generations’,5000,’PlotFcns’,@gaplotbestf);%种群数100,迭代数5000
ga(@zpp,3,option)