朋友要求帮忙做一个图片识别的小程序,因为要用在特定的环境下,所以决定采用java语言实现。首先用matlab实现了识别算法的仿真,因为只是对特定的数字组合的识别,所以非常的简单,放弃采用比较复杂的识别算法,采用最普通的像素比较的识别算法。(如果背景噪声比较复杂,可以考虑先滤波后识别)在写java程序的时候发现一些问题,网上关于图片像素级操作的资料不是太多,有的还不是太正确,特此写出自己的成果与大家分享。
核心类:BufferedImage,ImageIO
ImageIO类提供图象读写接口,可以对URL,InputStream等操作,得到图像信息十分的方便。
ImageIO在javax.imageio.*的包中,属于jdk中的标准类。提供的方法有:
read() 例:BufferedImage imd=ImageIO.read(new File(file));
write() 例:ImageIO.write(imd, “JPEG”, new File(“C://test”+k+”.gif”));
//具体方法可以查找jdk doc
BufferedImage类是一个Image类的子类,与Image不同的是,它是在内存中创建和修改的,你可以显示它也可以不显示它,这就看你的具体需求了。这里因为我用于图像的识别所以就不需要显示出来了。你可以通过ImageIO的方法来读取一个文件到BufferedImage,也可以将其写回一个文件中去。类似的操作可以看前面的两个方法。以及参考jdk doc
因为我要识别类似于身份验证的一个数字串图片,所以我考虑把这些数字分离出来,存在不同的图像内,这里BufferedImage类提供一个很方便的办法。
getSubimage(int left,int top,int width,int height)
例: BufferedImage newim[]=new BufferedImage[4];
newim[0]=imd.getSubimage(4,0,10,18);
newim[1]=imd.getSubimage(13,0,10,18);
newim[2]=imd.getSubimage(22,0,10,18);
newim[3]=imd.getSubimage(31,0,10,18);
最后为了得到图像的像素,我们需要的就是得到像素的方法,这个方法有很多,这里我介绍的是
getRGB(int x,int y) 得到特定像素点的RGB值。
例: pix=new int[10*18];pix[i*(10)+j]=newim[k].getRGB(j,i);
现在我们得到了像素,可以看出像素是一个一维数组,你如果不习惯可以考虑保存在一个二维的数组中,然后就来实施你的看家算法,什么小波变换,拉普拉斯算子,尽管来吧。怎么样是不是很方便呢?什么你好像看不太懂,好给你一些源程序好了,包括像素分解和识别算法。
源代码
/*
* Created on 2005-11-29
*
* TODO To change the template for this generated file go to
* Window – Preferences – Java – Code Style – Code Templates
*/
package com.syvin.image;
import java.awt.*;
import java.awt.image.*;
import java.io.FileOutputStream;
import java.io.*;
import java.io.InputStream;
import java.net.URL;
import javax.imageio.*;
public class MyImage{
BufferedImage imd;//待识别图像
private int iw,ih;//图像宽和高
public final static String path=”D://jyy//app//tomcat//webapps//userlogon//a.jpg”;
static public void main(String args[]) {
try{
MyImage app = new MyImage();//构造一个类
String s=app.getImageNum(“C://无标题.bmp”);//得到识别字符串
System.out.println(“recognize result”+s);
byte[] by=s.getBytes();
File f=new File(“C://testfile.txt”);
FileOutputStream fos=new FileOutputStream(f);//写入一个结果文件
fos.write(by);
fos.close();
}catch(Exception e){
e.printStackTrace();
}
}
//构造函数
public MyImage() throws IOException {
super(“Image Test”);
try{
}catch(Exception e){
e.printStackTrace();
}
}
//得到图像的值
public String getImageNum(String file){
StringBuffer sb=new StringBuffer(“”);
try{
imd=ImageIO.read(new File(file));//用ImageIO的静态方法读取图像
BufferedImage newim[]=new BufferedImage[4];
int []x=new int[4];
//将图像分成四块,因为要处理的文件有四个数字。
newim[0]=imd.getSubimage(4,0,10,18);
newim[1]=imd.getSubimage(13,0,10,18);
newim[2]=imd.getSubimage(22,0,10,18);
newim[3]=imd.getSubimage(31,0,10,18);
for(int k=0;k<4;k++){
x[k]=0;
ImageIO.write(newim[k], “JPEG”, new File(“C://test”+k+”.gif”));
this.iw=newim[k].getWidth(null);
this.ih=newim[k].getHeight(null);
pix=new int[iw*ih];
//因为是二值图像,这里的方法将像素读取出来的同时,转换为0,1的图像数组。
for(int i=0;i<ih;i++){
for(int j=0;j<iw;j++){
pix[i*(iw)+j]=newim[k].getRGB(j,i);
if(pix[i*(iw)+j]==-1)
pix[i*(iw)+j]=0;
else pix[i*(iw)+j]=1;
x[k]=x[k]+pix[i*(iw)+j];
}
}
//得到像匹配的数字。
int r=this.getMatchNum(pix);
sb.append(r);
System.out.println(“x=”+x[k]);
}
}catch(Exception e){
e.printStackTrace();
}
return sb.toString();
}
//数字模板 0-9
static int[][] value={
//num 0;
{0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,1,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num 1
{0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num2
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,1,1,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num3
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,0,0,0,
0,1,1,0,0,0,1,1,0,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,1,0,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,1,1,0,0,0,1,1,0,0,
0,0,1,1,1,1,1,0,0,0,
0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num4
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,1,1,1,0,0,
0,0,0,0,1,1,1,1,0,0,
0,0,0,1,1,0,1,1,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,1,1,0,0,
0,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num5
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,
0,1,1,1,1,1,1,1,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,1,1,1,0,0,0,
0,1,1,1,0,0,1,1,0,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num6
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,1,1,1,0,0,0,
0,1,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num7
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,1,1,0,
0,0,0,0,0,0,1,1,0,0,
0,0,0,0,1,1,1,0,0,0,
0,0,0,0,1,1,0,0,0,0,
0,0,0,1,1,0,0,0,0,0,
0,0,1,1,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num8
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,1,1,1,1,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
//num9
{
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,1,1,0,1,1,1,0,0,
0,1,1,0,0,0,0,1,1,0,
0,1,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,1,0,
0,0,0,1,1,1,0,1,1,0,
0,0,0,0,0,0,0,1,1,0,
0,0,1,0,0,0,0,1,1,0,
0,0,1,1,0,0,1,1,0,0,
0,0,0,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
}};
//图像像素相减取绝对值得到最小熵的结果。
public int getMatchNum(int[] pix){
int result=-1;
int temp=100;
int x;
for(int k=0;k<=9;k++){
x=0;
for(int i=0;i<pix.length;i++){
x=x+Math.abs(pix[i]-value[k][i]);
}
/*for(int a=0;a<18;a++){
for(int b=0;b<10;b++){
System.out.print(pix[a*10+b]+”-“+value[k][a*10+b]+”|”);
}
System.out.println();
}*/
if(x<temp)
{
temp=x;
result=k;
}
}
return result;
}
}