排序算法再探索

排序方法平均情况最好情况最坏情况辅助空间稳定性
冒泡排序O(n^2)O(n)O(n^2)O(1)稳定
选择排序O(n^2)O(n^2)O(n^2)O(1)不稳定
插入排序O(n^2)O(n)O(n^2)O(1)稳定
希尔排序O(n*log(n))~O(n^2)O(n^1.3)O(n^2)O(1)不稳定
堆排序O(n*log(n))O(n*log(n))O(n*log(n))O(1)不稳定
归并排序O(n*log(n))O(n*log(n))O(n*log(n))O(n)稳定
快速排序O(n*log(n))O(n*log(n))O(n^2)O(1)不稳定

冒泡排序经过优化以后,最好时间复杂度可以达到O(n)。设置一个标志位,如果有一趟比较中没有发生任何交换,可提前结束,因此在正序情况下,时间复杂度为O(n)。选择排序在最坏和最好情况下,都必须在剩余的序列中选择最小(大)的数,与已排好序的序列后一个位置元素做交换,依次最好和最坏时间复杂度均为O(n^2)。插入排序是在把已排好序的序列的后一个元素插入到前面已排好序(需要选择合适的位置)的序列中,在正序情况下时间复杂度为O(n)。堆是完全二叉树,因此树的深度一定是log(n)+1,最好和最坏时间复杂度均为O(n*log(n))。归并排序是将大数组分为两个小数组,依次递归,相当于二叉树,深度为log(n)+1,因此最好和最坏时间复杂度都是O(n*log(n))。快速排序在正序或逆序情况下,每次划分只得到比上一次划分少一个记录的子序列,用递归树画出来,是一棵斜树,此时需要n-1次递归,且第i次划分要经过n-i次关键字比较才能找到第i个记录,因此时间复杂度是\sum_{i=1}^{n-1}(n-i)=n(n-1)/2,即O(n^2)。

将一个从大到小的数组,用以下排序方法排序成从小到大的,()最快。
正确答案: D  

插入排序
冒泡排序
快速排序
堆排序
点赞