最大递增子序列求解从O(n^2)到O(nlogn)

最长递增子序列问题的求解

最长递增子序列问题是一个很基本、较常见的小问题,但这个问题的求解方法却并不那么显而易见,需要较深入的思考和较好的算法素养才能得出良好的算法。由于这个问题能运用学过的基本的算法分析和设计的方法与思想,能够锻炼设计较复杂算法的思维,我对这个问题进行了较深入的分析思考,得出了几种复杂度不同算法,并给出了分析和证明。
一, 最长递增子序列问题的描述
设L=

public void lis(float[] L)
  {
         int n = L.length;
         int[] f = new int[n];//用于存放f(i)值;
         f[0]=1;//以第a1为末元素的最长递增子序列长度为1;
         for(int i = 1;i<n;i++)//循环n-1次
         {
                f[i]=1;//f[i]的最小值为1;
                for(int j=0;j<i;j++)//循环i 次
                {
                       if(L[j]<L[i]&&f[j]>f[i]-1)
                              f[i]=f[j]+1;//更新f[i]的值。
                }
         }
         System.out.println(f[n-1]);            
    }

这个算法有两层循环,外层循环次数为n-1次,内层循环次数为i次,算法的时间复杂度
所以T(n)=O(n2)。这个算法的最坏时间复杂度与第一种算法的阶是相同的。但这个算法没有排序的时间,所以时间复杂度要优于第一种算法。
四, 对第二种算法的改进
在第二种算法中,在计算每一个f(i)时,都要找出最大的f(j)(j

lis1(float[] L)
{
    int n = L.length;
    float[] B = new float[n+1];//数组B;
    B[0]=-10000;//把B[0]设为最小,假设任何输入都大于-10000;
    B[1]=L[0];//初始时,最大递增子序列长度为1的最末元素为a1
    int Len = 1;//Len为当前最大递增子序列长度,初始化为1;
    int p,r,m;//p,r,m分别为二分查找的上界,下界和中点;
    for(int i = 1;i<n;i++)
    {
        p=0;r=Len;
        while(p<=r)//二分查找最末元素小于ai+1的长度最大的最大递增子序列;
        {
           m = (p+r)/2;
           if(B[m]<L[i]) p = m+1;
           else r = m-1;
        }
        B[p] = L[i];//将长度为p的最大递增子序列的当前最末元素置为ai+1;
        if(p>Len) Len++;//更新当前最大递增子序列长度;


    }
    System.out.println(Len);
}

现在来证明这个算法为什么是正确的。要使算法正确只须证如下命题:
命题1:每一次循环结束数组B中元素总是按递增顺序排列的。
证明:用数学归纳法,对循环次数i进行归纳。
当i=0时,即程序还没进入循环时,命题显然成立。
设i

点赞