Quasi-Recurrent Neural Network (QRNN) :准循环神经网络 PyTorch 实现

准循环神经网络 QRNN 提供了和 LSTM 相似的精度,但是基于使用实例可以比高度优化的 NVIDIA cuDNN LSTM 实现 2 到 17 倍快。

Quasi-Recurrent Neural Network (QRNN) for PyTorch

项目地址:salesforce/pytorch-qrnn

这个项目包含一个 PyTorch 实现的 Salesforce Research’s Quasi-Recurrent Neural Networks 论文.

This repository contains a PyTorch implementation of Salesforce Research’s Quasi-Recurrent Neural Networks paper.

The QRNN provides similar accuracy to the LSTM but can be betwen 2 and 17 times faster than the highly optimized NVIDIA cuDNN LSTM implementation depending on the use case.

To install, simply run:

pip install cupy pynvrtc git+https://github.com/salesforce/pytorch-qrnn

If you use this code or our results in your research, please cite:

@article{bradbury2016quasi,

title={{Quasi-Recurrent Neural Networks}},

author={Bradbury, James and Merity, Stephen and Xiong, Caiming and Socher, Richard},

journal={International Conference on Learning Representations (ICLR 2017)},

year={2017}

}

更多机器学习资源(微信群):TensorFlow

    原文作者:灰灰
    原文地址: https://zhuanlan.zhihu.com/p/30026773
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞