由于pytorch会自动舍弃图计算的中间结果,所以想要获取这些数值就需要使用钩子函数。
钩子函数包括Variable的钩子和nn.Module钩子,用法相似。
一、register_hook
import torch from torch.autograd import Variable grad_list = [] def print_grad(grad): grad_list.append(grad) x = Variable(torch.randn(2, 1), requires_grad=True) y = x+2 z = torch.mean(torch.pow(y, 2)) lr = 1e-3 y.register_hook(print_grad) z.backward() x.data -= lr*x.grad.data print(grad_list)
[Variable containing: 1.5653 3.5175 [torch.FloatTensor of size 2x1] ]
二、register_forward_hook
& register_backward_hook
这两个函数的功能类似于variable函数的register_hook
,可在module前向传播或反向传播时注册钩子。
每次前向传播执行结束后会执行钩子函数(hook)。前向传播的钩子函数具有如下形式:hook(module, input, output) -> None
,而反向传播则具有如下形式:hook(module, grad_input, grad_output) -> Tensor or None
。
钩子函数不应修改输入和输出,并且在使用后应及时删除,以避免每次都运行钩子增加运行负载。钩子函数主要用在获取某些中间结果的情景,如中间某一层的输出或某一层的梯度。这些结果本应写在forward函数中,但如果在forward函数中专门加上这些处理,可能会使处理逻辑比较复杂,这时候使用钩子技术就更合适一些。下面考虑一种场景,有一个预训练好的模型,需要提取模型的某一层(不是最后一层)的输出作为特征进行分类,但又不希望修改其原有的模型定义文件,这时就可以利用钩子函数。下面给出实现的伪代码。
model = VGG() features = t.Tensor() def hook(module, input, output): '''把这层的输出拷贝到features中''' features.copy_(output.data) handle = model.layer8.register_forward_hook(hook) _ = model(input) # 用完hook后删除 handle.remove()
测试LeNet网络
import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6,16,5) self.fc1 = nn.Linear(16*5*5,120) self.fc2 = nn.Linear(120,84) self.fc3 = nn.Linear(84,10) def forward(self,x): x = F.max_pool2d(F.relu(self.conv1(x)),(2,2)) x = F.max_pool2d(F.relu(self.conv2(x)),2) x = x.view(x.size()[0], -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
先模拟一下单次的向前传播,
net = LeNet() img = t.autograd.Variable((t.arange(32*32*1).view(1,1,32,32))) net(img)
Variable containing: Columns 0 to 7 27.6373 -13.4590 23.0988 -16.4491 -8.8454 -15.6934 -4.8512 1.3490 Columns 8 to 9 3.7801 -15.9396 [torch.FloatTensor of size 1x10]
仿照上面示意,进行钩子注册,获取第一卷积层输出结果,
def hook(module, inputdata, output): '''把这层的输出拷贝到features中''' print(output.data) handle = net.conv2.register_forward_hook(hook) net(img) # 用完hook后删除 handle.remove()
……
……
[torch.FloatTensor of size 1x16x10x10]
看看hook能识别什么
import torch from torch import nn import torch.functional as F from torch.autograd import Variable def for_hook(module, input, output): print(module) for val in input: print("input val:",val) for out_val in output: print("output val:", out_val) class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x): return x+1 model = Model() x = Variable(torch.FloatTensor([1]), requires_grad=True) handle = model.register_forward_hook(for_hook) print(model(x)) handle.remove()
可见对于目标层,其输入输出都可以获取到,
Model( ) input val: Variable containing: 1 [torch.FloatTensor of size 1] output val: Variable containing: 2 [torch.FloatTensor of size 1] Variable containing: 2 [torch.FloatTensor of size 1]