『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

一、封装新的PyTorch函数

继承Function类

forward:输入Variable->中间计算Tensor->输出Variable

backward:均使用Variable

线性映射

from torch.autograd import Function

class MultiplyAdd(Function):                       # <----- 类需要继承Function类
                                                            
    @staticmethod                                  # <-----forward和backward都是静态方法
    def forward(ctx, w, x, b):                     # <-----ctx作为内部参数在前向反向传播中协调
        print('type in forward',type(x))
        ctx.save_for_backward(w,x)                 # <-----ctx保存参数
        output = w * x + b
        return output                              # <-----forward输入参数和backward输出参数必须一一对应
        
    @staticmethod                                  # <-----forward和backward都是静态方法
    def backward(ctx, grad_output):                # <-----ctx作为内部参数在前向反向传播中协调
        w,x = ctx.saved_variables                  # <-----ctx读取参数
        print('type in backward',type(x))
        grad_w = grad_output * x
        grad_x = grad_output * w
        grad_b = grad_output * 1
        return grad_w, grad_x, grad_b              # <-----backward输入参数和forward输出参数必须一一对应

 

调用方法一

类名.apply(参数)

输出变量.backward()

import torch as t
from torch.autograd import Variable as V

x = V(t.ones(1))
w = V(t.rand(1), requires_grad = True)
b = V(t.rand(1), requires_grad = True)
print('开始前向传播')
z=MultiplyAdd.apply(w, x, b)                       # <-----forward
print('开始反向传播')
z.backward() # 等效                                 # <-----backward

# x不需要求导,中间过程还是会计算它的导数,但随后被清空
print(x.grad, w.grad, b.grad)
开始前向传播
type in forward <class 'torch.FloatTensor'>
开始反向传播
type in backward <class 'torch.autograd.variable.Variable'>
(None, 
Variable containing: 1 [torch.FloatTensor of size 1],
Variable containing: 1 [torch.FloatTensor of size 1])

 

调用方法二

类名.apply(参数)

输出变量.grad_fn.apply()

x = V(t.ones(1))
w = V(t.rand(1), requires_grad = True)
b = V(t.rand(1), requires_grad = True)
print('开始前向传播')
z=MultiplyAdd.apply(w,x,b)                         # <-----forward
print('开始反向传播')

# 调用MultiplyAdd.backward
# 会自动输出grad_w, grad_x, grad_b
z.grad_fn.apply(V(t.ones(1)))                      # <-----backward,在计算中间输出,buffer并未清空,所以x的梯度不是None
开始前向传播
type in forward <class 'torch.FloatTensor'>
开始反向传播
type in backward <class 'torch.autograd.variable.Variable'>
(Variable containing:
  1
 [torch.FloatTensor of size 1], Variable containing:
  0.7655
 [torch.FloatTensor of size 1], Variable containing:
  1
 [torch.FloatTensor of size 1])

 

之所以forward函数的输入是tensor,而backward函数的输入是variable,是为了实现高阶求导。backward函数的输入输出虽然是variable,但在实际使用时autograd.Function会将输入variable提取为tensor,并将计算结果的tensor封装成variable返回。在backward函数中,之所以也要对variable进行操作,是为了能够计算梯度的梯度(backward of backward)。下面举例说明,有关torch.autograd.grad的更详细使用请参照文档。

二、高阶导数

grad_x =t.autograd.grad(y, x, create_graph=True)

grad_grad_x = t.autograd.grad(grad_x[0],x)

x = V(t.Tensor([5]), requires_grad=True)
y = x ** 2

grad_x = t.autograd.grad(y, x, create_graph=True)
print(grad_x) # dy/dx = 2 * x

grad_grad_x = t.autograd.grad(grad_x[0],x)
print(grad_grad_x) # 二阶导数 d(2x)/dx = 2
(Variable containing:
  10
 [torch.FloatTensor of size 1],)
(Variable containing:
  2
 [torch.FloatTensor of size 1],)

三、梯度检查

t.autograd.gradcheck(Sigmoid.apply, (test_input,), eps=1e-3)

此外在实现了自己的Function之后,还可以使用gradcheck函数来检测实现是否正确。gradcheck通过数值逼近来计算梯度,可能具有一定的误差,通过控制eps的大小可以控制容忍的误差。

class Sigmoid(Function):
                                                             
    @staticmethod
    def forward(ctx, x): 
        output = 1 / (1 + t.exp(-x))
        ctx.save_for_backward(output)
        return output
        
    @staticmethod
    def backward(ctx, grad_output): 
        output,  = ctx.saved_variables
        grad_x = output * (1 - output) * grad_output
        return grad_x                            

# 采用数值逼近方式检验计算梯度的公式对不对
test_input = V(t.randn(3,4), requires_grad=True)
t.autograd.gradcheck(Sigmoid.apply, (test_input,), eps=1e-3)
True

 

测试效率,

def f_sigmoid(x):
    y = Sigmoid.apply(x)
    y.backward(t.ones(x.size()))
    
def f_naive(x):
    y =  1/(1 + t.exp(-x))
    y.backward(t.ones(x.size()))
    
def f_th(x):
    y = t.sigmoid(x)
    y.backward(t.ones(x.size()))
    
x=V(t.randn(100, 100), requires_grad=True)
%timeit -n 100 f_sigmoid(x)
%timeit -n 100 f_naive(x)
%timeit -n 100 f_th(x)

 实际测试结果,

245 µs ± 70.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
211 µs ± 23.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
219 µs ± 36.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

书中说的结果,

100 loops, best of 3: 320 µs per loop
100 loops, best of 3: 588 µs per loop
100 loops, best of 3: 271 µs per loop

很奇怪,我的结果竟然是:简单堆砌<官方封装<自己封装……不过还是引用一下书中的结论吧:

显然f_sigmoid要比单纯利用autograd加减和乘方操作实现的函数快不少,因为f_sigmoid的backward优化了反向传播的过程。另外可以看出系统实现的buildin接口(t.sigmoid)更快。

 

    原文作者:pytorch
    原文地址: https://www.cnblogs.com/hellcat/p/8453615.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞