一、简单数学操作
1、逐元素操作
t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域。
a = t.arange(0,6).view(2,3) print("a:",a) print("t.cos(a):",t.cos(a)) print("a % 3:",a % 3) # t.fmod(a, 3) print("a ** 2:",a ** 2) # t.pow(a, 2) print("t.clamp(a, min=2, max=4)",t.clamp(a,min=2,max=4))
a: 0 1 2 3 4 5 [torch.FloatTensor of size 2x3] t.cos(a): 1.0000 0.5403 -0.4161 -0.9900 -0.6536 0.2837 [torch.FloatTensor of size 2x3] a % 3: 0 1 2 0 1 2 [torch.FloatTensor of size 2x3] a ** 2: 0 1 4 9 16 25 [torch.FloatTensor of size 2x3] t.clamp(a, min=2, max=4) 2 2 2 3 4 4 [torch.FloatTensor of size 2x3]
2、归并操作
b = t.ones(2,3) print("b.sum():",b.sum(dim=0,keepdim=True)) print("b.sum():",b.sum(dim=0,keepdim=False))
b.sum(): 2 2 2 [torch.FloatTensor of size 1x3] b.sum(): 2 2 2 [torch.FloatTensor of size 3]
cumsum和cumprob(累加和累乘)属于特殊的归并,结果相对于输入并没有降维。
3、比较操作
之前有说过,t.max用法较为特殊;而a.topk是个对于深度学习很是方便的函数。
a = t.linspace(0,15,6).view(2,3) print("a:",a) print("a.sort(2):\n",a.sort(dim=1)) # 在某个维度上排序 print("a.topk(2):\n",a.topk(2,dim=1)) # 在某个维度上寻找top-k print("t.max(a):\n",t.max(a)) # 不输入dim的话就是普通的max print("t.max(a,dim=1):\n",t.max(a,dim=1)) # 输入dim的话就会集成argmax的功能
a: 0 3 6 9 12 15 [torch.FloatTensor of size 2x3] a.sort(2): ( 0 3 6 9 12 15 [torch.FloatTensor of size 2x3] , 0 1 2 0 1 2 [torch.LongTensor of size 2x3] ) a.topk(2): ( 6 3 15 12 [torch.FloatTensor of size 2x2] , 2 1 2 1 [torch.LongTensor of size 2x2] ) t.max(a): 15.0 t.max(a,dim=1): ( 6 15 [torch.FloatTensor of size 2] , 2 2 [torch.LongTensor of size 2] )
二、Numpy和Tensor
1、数组和张量内存共享
import numpy as np # 数组和Tensor互换 a = t.ones(2,3) b = a.numpy() c = t.from_numpy(b) c[0,0] = 0 print(a)
0 1 1 1 1 1 [torch.FloatTensor of size 2x3]
2、广播原理及模拟
# 广播法则 # 1.所有数组向shape最长的数组看齐,不足的在前方补一 # 2.两个数组要么在某个维度长度一致,要么一个为一,否则不能计算 # 3.对长度为一的维度,计算时复制元素扩充至和此维度最长数组一致 a = t.ones(3,2) b = t.ones(2,3,1) print(a + b) # 先a->(1,3,2)然后a,b->(2,3,2)
(0 ,.,.) = 2 2 2 2 2 2 (1 ,.,.) = 2 2 2 2 2 2 [torch.FloatTensor of size 2x3x2]
使用尺寸调整函数模拟广播过程如下,
# 手工复现广播过程 # expend可以扩张维度的数字大小,repeat类似,但是expend不会复制数组内存,节约空间 # 被扩充维度起始必须是1才行 print(a.unsqueeze(0).expand(2,3,2) + b.expand(2,3,2)) print(a.view(1,3,2).expand(2,3,2) + b.expand(2,3,2))
(0 ,.,.) = 2 2 2 2 2 2 (1 ,.,.) = 2 2 2 2 2 2 [torch.FloatTensor of size 2x3x2] (0 ,.,.) = 2 2 2 2 2 2 (1 ,.,.) = 2 2 2 2 2 2 [torch.FloatTensor of size 2x3x2]
3、expand方法
我们来看看expand方法,它要求我们的被扩展维度为1才行(如下),如果不是1则扩展失败。
expand方法不会复制数组,不会占用额外空间,只有在需要时才进行扩展,很节约内存。
a = t.ones(1) print(a.shape) b = a.expand(6) a = 2 print(a)
torch.Size([1]) 21 1 1 1 1 1 [torch.FloatTensor of size 6]