查看Ubuntu/Anaconda/cuda/cudnn/Tensorflow/Pytorch版本

 查看anaconda版本:

conda -V

驱动版本:

cat /proc/driver/nvidia/version

 

查看Cuda版本:

cat /usr/local/cuda/version.txt

CUDA Version 9.0.176

 

 查看cudnn版本:

gpu4@gpu4-S2600IP:~$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 4
#define CUDNN_PATCHLEVEL 2
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
 
#include "driver_types.h"

  

 

查看Linux/Ubuntu版本:

(1)

cat /proc/version

输出:

Linux version 4.4.0-137-generic (buildd@lgw01-amd64-037) (gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.10) ) #163-Ubuntu SMP Mon Sep 24 13:14:43 UTC 2018

  

(2)

uname -a 

输出:

Linux gpu4 4.4.0-137-generic #163-Ubuntu SMP Mon Sep 24 13:14:43 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

 

(3)

lsb_release -a

输出:

No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 16.04.4 LTS
Release:	16.04
Codename:	xenial

 查看tensorflow版本:

$pip list | grep tensorflow
$python
>>>import tensorflow as tf >>>tf.__version__ #查询tensorflow安装路径为: >>>tf.__path__

 查看pytorch版本:

$python

>>>import torch

>>>print(torch.__version__)

 



    原文作者:pytorch
    原文地址: https://www.cnblogs.com/hozhangel/p/9950467.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞