查看anaconda版本:
conda -V
驱动版本:
cat /proc/driver/nvidia/version
查看Cuda版本:
cat /usr/local/cuda/version.txt
CUDA Version 9.0.176
查看cudnn版本:
gpu4@gpu4-S2600IP:~$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 #define CUDNN_MAJOR 7 #define CUDNN_MINOR 4 #define CUDNN_PATCHLEVEL 2 -- #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL) #include "driver_types.h"
查看Linux/Ubuntu版本:
(1)
cat /proc/version
输出:
Linux version 4.4.0-137-generic (buildd@lgw01-amd64-037) (gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.10) ) #163-Ubuntu SMP Mon Sep 24 13:14:43 UTC 2018
(2)
uname -a
输出:
Linux gpu4 4.4.0-137-generic #163-Ubuntu SMP Mon Sep 24 13:14:43 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
(3)
lsb_release -a
输出:
No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 16.04.4 LTS Release: 16.04 Codename: xenial
查看tensorflow版本:
$pip list | grep tensorflow
$python >>>import tensorflow as tf >>>tf.__version__ #查询tensorflow安装路径为: >>>tf.__path__
查看pytorch版本:
$python >>>import torch >>>print(torch.__version__)