import torch
import numpy as np
details about math operation in torch can be found in: http://pytorch.org/docs/torch.html#math-operations
convert numpy to tensor or vise versa
# convert numpy to tensor or vise versa
np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data) # np转成torch
tensor2array = torch_data.numpy() # torch转成np
print(
'\nnumpy array:', np_data, # [[0 1 2] [3 4 5]]
'\ntorch tensor:', torch_data, # tensor([[0, 1, 2], [3, 4, 5]])
'\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]]
)
abs 绝对值
# abs
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data) # 32-bit floating point
print(
'\nabs',
'\nnumpy: ', np.abs(data), # [1 2 1 2]
'\ntorch: ', torch.abs(tensor) # tensor([1., 2., 1., 2.])
)
sin 正弦值
# sin
print(
'\nsin',
'\nnumpy: ', np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743]
'\ntorch: ', torch.sin(tensor) # tensor([-0.8415, -0.9093, 0.8415, 0.9093])
)
mean 均值
# mean
print(
'\nmean',
'\nnumpy: ', np.mean(data), # 0.0
'\ntorch: ', torch.mean(tensor) # tensor(0.)
)
matrix multiplication 矩阵乘法
# matrix multiplication
data = [[1, 2], [3, 4]]
tensor = torch.FloatTensor(data) # 32-bit floating point
# correct method
print(
'\nmatrix multiplication (matmul)',
'\nnumpy: ', np.matmul(data, data), # [[7, 10], [15, 22]]
'\ntorch: ', torch.mm(tensor, tensor) # tensor([[ 7., 10.], [15., 22.]])
)
incorrect method 不正确的方法
“`
incorrect method
data = np.array(data)
print(
‘\nmatrix multiplication (dot)’,
‘\nnumpy: ‘, data.dot(data), # [[7, 10], [15, 22]]
‘\ntorch: ‘, tensor.dot(tensor) # this will convert tensor to [1,2,3,4], you’ll get 30.0, RuntimeError: dot: Expected 1-D argument self, but got 2-D
)