部分内容转载自 http://blog.csdn.net/GYGuo95/article/details/78821617,在此表示由衷感谢。
此方法需要安装python-graphviz
: conda install -n pytorch python-graphviz
或者 sudo apt-get install graphviz
别忘了先把下面的代码下载到自己的路径(感谢大神)。
visualize.py
from graphviz import Digraph import torch from torch.autograd import Variable def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: assert isinstance(params.values()[0], Variable) param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable name = param_map[id(u)] if params is not None else '' node_name = '%s\n %s' % (name, size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) add_nodes(var.grad_fn) return dot
下面是使用方法:
因人而异,根据网络调整输入,以Inception V3为例。
from MyInceptionV3 import inception_v3 import numpy as np import torch from torch.autograd import Variable from visualize import make_dot if __name__ == '__main__': x=np.arange(2*299*299*3) x=x.reshape(2,3,299,299) x=x/float(x.max()) x=torch.from_numpy(x) x=x.float() x=Variable(x) a = inception_v3(pretrained=True) y = a(x) g = make_dot(y) #g.view() g.render('here', view=False)
我的电脑没有可视化界面,一定要记得False那个view。(网络结构会保存成pdf)结果图太复杂不粘贴了。