学了几天Pytorch,大致明白代码在干什么了,贴一下。。
import torch from torch.utils.data import DataLoader from torchvision import datasets from torchvision import transforms from torch import nn, optim from torch.nn import functional as F class ResBlk(nn.Module): """ resnet block """ def __init__(self, ch_in, ch_out): super(ResBlk, self).__init__() self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(ch_out) self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(ch_out) self.extra = nn.Sequential() if ch_out != ch_in: # [b, ch_in, h, w] => [b, ch_out, h, w] self.extra = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1), nn.BatchNorm2d(ch_out) ) def forward(self,x): """ x:[b, ch, h, w] """ out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) # short cut # extra module: [b, ch_in, h, w] => [b, ch_out, h, w] # element-wise add: [b, ch_in, h, w] with [b, ch_out, h, w] out = self.extra(x) + out return out class ResNet18(nn.Module): def __init(self): super(ResNet18, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(3,64,kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64) ) # followd 4 blocks # [b, 64, h, w] => [b, 128, h, w] self.blk1 = ResBlk(64,128) # [b, 128, h, w] => [b, 256, h, w] self.blk2 = ResBlk(128,256) # [b, 256, h, w] => [b, 512, h, w] self.blk3 = ResBlk(256,512) # [b, 512, h, w] => [b, 1024, h, w] self.blk4 = ResBlk(512,1024) self.outlayer = nn.Linear(1024, 10) def forward(self, x): x = F.relu(self.conv1(x)) # [b, 64, h, w] => [b, 1024, h, w] x = self.blk1(x) x = self.blk2(x) x = self.blk3(x) x = self.blk4(x) x = self.outlayer(x) return x def main(): blk = ResBlk(64, 128) tmp = torch.randn(2, 64, 32, 32) out = blk(tmp) print(out.shape) if __name__ == '__main__': main()
#
torch.Size([2, 128, 32, 32])
ResNet主要是利用残差相加的优势进行网络层数加深,原来输入图片是64通道,要求经过一个ResNet Block后输出是128维,那么那个要加的X也要升维变成128,因此代码里做出了处理。