pytorch中文文档学习0
1.自动求导
每个变量都有两个标志:requires_grad和volatile.
requires_grad: 只有所有输入都不需要梯度时,输出才不需要;如果有一个输入有梯度,它的输出也有梯度。
>>> x = Variable(torch.randn(5, 5)) >>> y = Variable(torch.randn(5, 5)) >>> z = Variable(torch.randn(5, 5), requires_grad=True) >>> a = x + y >>> a.requires_grad False >>> b = a + z >>> b.requires_grad True # 如果想冻结部分模型时,只要切换冻结模型中的requires_grad标志就可以了 model = torchvision.models.resnet18(pretrained=True) for param in model.parameters(): param.requires_grad = False # Replace the last fully-connected layer # Parameters of newly constructed modules have requires_grad=True by default model.fc = nn.Linear(512, 100) # Optimize only the classifier optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)
volatile
纯粹的inference模式下推荐使用volatile,当你确定你甚至不用调用.backward()时,它比任何其他自动求导的设置更有效。–它将使用绝对最小的内存来评估模型。volatile也决定了require_grad is False。volatile不同于require_grad的传递。如果一个操作甚至只有一个volatile的输入,它的输出也将会是volatile.
>>> regular_input = Variable(torch.randn(5, 5)) >>> volatile_input = Variable(torch.randn(5, 5), volatile=True) >>> model = torchvision.models.resnet18(pretrained=True) >>> model(regular_input).requires_grad True >>> model(volatile_input).requires_grad False >>> model(volatile_input).volatile True >>> model(volatile_input).creator is None True
2.扩展torch
扩展torch.autograd
如果想添加一个新的operation到autograd的话,你的operation需要继承class Function。autograd使用Function计算结果和梯度,同时编码operation的历史。每个新的operation(function)都需要实现三个方法:
- __ init __(optional)
- forward()
- backward()
扩展torch.nn
nn包含两种接口-modules和他们的functional版本。通过这两个接口,你都可以扩展nn。但是记忆扩展layer的时候,使用modules,因为modules保存着参数和buffer。如果不需要参数的话,那么建议使用functional(激活函数,pooling,这些都不需要参数。)