本人实验中使用feed的方式填充数据,sess处的代码如下:
1 with tf.Session() as sess: 2 init = tf.global_variables_initializer() 3 sess.run(init) 4 for epoch in range(a.epochs): 5 input, target = load_batch_data(batch_size=16, a=a) 6 batch_input = input.astype(np.float32) 7 batch_target = target.astype(np.float32) 8 sess.run(predict_real, feed_dict={input: batch_input, target: batch_target})
运行的时候出现:{TypeError}unhashable type: ‘numpy.ndarray’
后 来 发 现:
在session外边定义input和target的时候是这么写的:
1 input = tf.placeholder(dtype=tf.float32, shape=[None, image_size, image_size, num_channels]) 2 target = tf.placeholder(dtype=tf.float32, shape=[None, image_size, image_size, num_channels])
然而,我在开启session后又定义了input,target。这导致我在运行下面这行代码的时候,
1 sess.run(predict_real, feed_dict={input: batch_input, target: batch_target})
出现了{TypeError}unhashable type: ‘numpy.ndarray’这样的错误。然而此input和target非session外面的input和target。知道是这个原因后,改正的话就很简单了,修改session内input和target的名称即可,如下:
1 with tf.Session() as sess: 2 init = tf.global_variables_initializer() 3 sess.run(init) 4 if a.mode == 'train': 5 for epoch in range(a.epochs): 6 batch_input, batch_target = load_batch_data(a=a) 7 batch_input = batch_input.astype(np.float32) 8 batch_target = batch_target.astype(np.float32) 9 sess.run(model, feed_dict={input: batch_input, target: batch_target}) 10 print('epoch' + str(epoch) + ':') 11 saver.save(sess, 'model_parameter/train.ckpt') 12 print('training finished!!!') 13 elif a.mode == 'test': 14 #ceshi 15 ckpt = tf.train.latest_checkpoint(a.checkpoint) 16 saver.restore(sess, ckpt) 17 # 获取测试时候的图像,然后添加标签 18 batch_input, _ = load_batch_data(a=a) 19 # batch_input = batch_input / 255. 20 batch_input = batch_input.astype(np.float32) 21 generator_output = sess.run(test_output, feed_dict={input: batch_input}) 22 # 对结果进行处理,图像通道上减去3,得到rgb图像 23 result = process_generator_output(generator_output) 24 if result: 25 print('测试完成!') 26 else: 27 print('the MODE is not avaliable...')