Tensorflow安装环境更新

本博文是对前面两篇tensorflow的博文的一个继续,对环境的更新。

基于tensorflow的MNIST手写识别

安装tensorflow,那叫一个坑啊

 

主要出发点:

上述两篇博文的程序运行的环境,其实是没有用到GPU的。本篇博文,介绍如何利用GPU。

 

首先通过pip重新安装一个支持gpu的tensorflow,采用upgrade的方式进行。

[root@bogon tensorflow]# pip install --upgrade tensorflow-gpu
Collecting tensorflow-gpu
  Downloading tensorflow_gpu-1.0.1-cp27-cp27mu-manylinux1_x86_64.whl (94.8MB)
    100% |████████████████████████████████| 94.8MB 9.6kB/s 
Requirement already up-to-date: protobuf>=3.1.0 in /usr/lib64/python2.7/site-packages (from tensorflow-gpu)
Requirement already up-to-date: six>=1.10.0 in /usr/lib/python2.7/site-packages (from tensorflow-gpu)
Requirement already up-to-date: wheel in /usr/lib/python2.7/site-packages (from tensorflow-gpu)
Requirement already up-to-date: mock>=2.0.0 in /usr/lib/python2.7/site-packages (from tensorflow-gpu)
Requirement already up-to-date: numpy>=1.11.0 in /usr/lib64/python2.7/site-packages (from tensorflow-gpu)
Requirement already up-to-date: setuptools in /usr/lib/python2.7/site-packages (from protobuf>=3.1.0->tensorflow-gpu)
Requirement already up-to-date: funcsigs>=1; python_version < "3.3" in /usr/lib/python2.7/site-packages (from mock>=2.0.0->tensorflow-gpu)
Requirement already up-to-date: pbr>=0.11 in /usr/lib/python2.7/site-packages (from mock>=2.0.0->tensorflow-gpu)
Requirement already up-to-date: appdirs>=1.4.0 in /usr/lib/python2.7/site-packages (from setuptools->protobuf>=3.1.0->tensorflow-gpu)
Requirement already up-to-date: packaging>=16.8 in /usr/lib/python2.7/site-packages (from setuptools->protobuf>=3.1.0->tensorflow-gpu)
Requirement already up-to-date: pyparsing in /usr/lib/python2.7/site-packages (from packaging>=16.8->setuptools->protobuf>=3.1.0->tensorflow-gpu)
Installing collected packages: tensorflow-gpu
Successfully installed tensorflow-gpu-1.0.1

这个过程顺利完成。

 

然后,将MNIST的手写识别程序,在运行一下,验证一下,是否启用GPU。

[root@bogon tensorflow]# python mnist_demo1.py 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:126] Couldn't open CUDA library libcudnn.so.5. LD_LIBRARY_PATH: /usr/local/cuda-8.0/lib64: I tensorflow/stream_executor/cuda/cuda_dnn.cc:3517] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: 
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:82:00.0
Total memory: 7.92GiB
Free memory: 7.81GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:82:00.0)
F tensorflow/stream_executor/cuda/cuda_dnn.cc:222] Check failed: s.ok() could not find cudnnCreate in cudnn DSO; dlerror: /usr/lib/python2.7/site-packages/tensorflow/python/_pywrap_tensorflow.so: undefined symbol: cudnnCreate
Aborted (core dumped)

上面红色部分报错了,找不到cudnn的so文件,进入到cuda的安装路径,查看是否有这个so。

[root@bogon lib64]# ll libcudnn
libcudnn.so.5.1    libcudnn.so.5.1.5  libcudnn_static.a  

的确没有libcudnn.so.5的文件。

 

下面,建立一个软连接,将libcudnn.so.5指向libcudnn.so.5.1。

[root@bogon lib64]# ln -s libcudnn.so.5.1 libcudnn.so.5
[root@bogon lib64]# ll libcudnn*
lrwxrwxrwx. 1 root root       15 Mar 23 16:58 libcudnn.so.5 -> libcudnn.so.5.1
lrwxrwxrwx. 1 root root       17 Mar 20 17:12 libcudnn.so.5.1 -> libcudnn.so.5.1.5
-rwxr-xr-x. 1 root root 79337624 Mar 20 17:11 libcudnn.so.5.1.5
-rw-r--r--. 1 root root 69756172 Mar 20 17:12 libcudnn_static.a

现在,有了这个libcudnn.so.5的文件了。

 

再次验证mnist的手写识别程序。

[root@bogon tensorflow]# python mnist_demo1.py 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: 
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:82:00.0
Total memory: 7.92GiB
Free memory: 7.81GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:82:00.0)
0.9092

到现在为止,我的tensorflow的运行环境,已经是基于GPU的了。

 

下面附上测试中的mnist_demo1.py的内容:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import tensorflow as tf

import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

sess = tf.InteractiveSession()

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

w = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

init = tf.global_variables_initializer()
sess.run(init)

y = tf.nn.softmax(tf.matmul(x, w) + b)

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

for i in range(1000):
  batch = mnist.train.next_batch(50)
  train_step.run(feed_dict={x: batch[0], y_: batch[1]})

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})

 

 

最后说明下,上述WARNING部分:

W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.

暂时没有关注,所知道的处理办法,就是用bazel进行源码安装tensorflow可以解决这个问题。由于不是太影响实验,暂且不关注。

 

    原文作者:tensorflow
    原文地址: https://www.cnblogs.com/shihuc/p/6609739.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞