最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 48071 Accepted Submission(s): 21174
Problem Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input 输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
Output 对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
Dijstra堆优化算法
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <queue>
#include <vector>
#include <limits>
using namespace std;
const int maxn = 150;
const int INF = numeric_limits<int>::max();
struct Edge {
int from, to, dist;
Edge(int from, int to, int dist) : from(from), to(to), dist(dist) {}
};
struct HeapNode {
int d, u;
HeapNode(int d, int u) : d(d), u(u) {}
bool operator < (const HeapNode& hns) const {
return d > hns.d;
}
};
struct Dijstra {
int d[maxn], p[maxn], n;
bool v[maxn];
vector<Edge> edges;
vector<int> G[maxn];
void Init(int n) {
this->n = n;
edges.clear();
for (int i = 0; i < n; i++) G[i].clear();
for (int i = 0; i < n; i++) d[i] = INF;
memset(v, false, sizeof(v));
}
void AddEdges(int from, int to, int dist) {
int m;
edges.push_back(Edge(from, to, dist)); //将edges的位置哈希到G中
m = edges.size();
G[from].push_back(m - 1);
edges.push_back(Edge(to, from, dist));
m = edges.size();
G[to].push_back(m - 1);
}
void dijstra(int s) {
d[s] = 0;
priority_queue<HeapNode> Q;
Q.push(HeapNode(0, s));
while (!Q.empty()) {
HeapNode hn = Q.top(); Q.pop();
int u = hn.u;
if (v[u]) continue;
v[u] = true;
for (int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if (d[e.to] > d[e.from] + e.dist) {
d[e.to] = d[e.from] + e.dist;
p[e.to] = G[u][i];
//push()
Q.push(HeapNode(d[e.to], e.to));
}
}
}
}
};
int main()
{
int N, M;
Dijstra dij;
while (~scanf("%d%d", &N, &M) && (N || M)) {
dij.Init(N);
int from, to, dist;
for (int i = 0; i < M; i++) {
scanf("%d%d%d", &from, &to, &dist);
dij.AddEdges(from - 1, to - 1, dist);
}
dij.dijstra(0);
printf("%d\n", dij.d[N - 1]);
}
return 0;
}
Bellman-Ford算法
如果最短路存在,一定存在一个不含环的最短路
理由如下:在边权可正课负的图中,环游零环、正环和负环三种。如果包含零环或者正环,去掉以后路径不会边长;
如果包含负环,意味着最短路不存在,因为在负环中每绕一次,都会使路径长度减小,没有最小值
既然不含环,最短路径最多只经过(起点不算)n – 1个顶点,可以通过n – 1“轮”松弛来得到
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 10005 * 2; //无向图,存两条边
const int INF = numeric_limits<int>::max();
int u[maxn], v[maxn], w[maxn], d[105];
int N, M;
int main()
{
while (~scanf("%d%d", &N, &M) && (N || M)) {
for (int i = 1; i <= N; i++) d[i] = INF;
for (int i = 1; i <= M; i++) {
scanf("%d%d%d", &u[i], &v[i], &w[i]);
}
for (int i = M + 1; i <= M + M; i++) {
u[i] = v[i - M];
v[i] = u[i - M];
w[i] = w[i - M];
}
d[1] = 0;
for (int i = 0; i < N - 1; i++) {
for (int k = 1; k <= M + M; k++) {
int x = u[k], y = v[k];
if (d[x] < INF) {
d[y] = min(d[y], d[x] + w[k]); //松弛
}
}
}
printf("%d\n", d[N]);
}
return 0;
}
时间复杂度为O(n * m)
用队列优化Bellman-Ford算法,用邻接表存图,减少对边的重复检查
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int maxn = 10005 * 2;
const int INF = numeric_limits<int>::max();
struct Edge {
int u, v, w;
Edge(int u, int v, int w) : u(u), v(v), w(w) {};
Edge() {};
};
int d[105];
int N, M;
bool inq[105]; //标记某个点是否在queue里
queue<int> Q;
vector<int> G[105];
vector<Edge> edges;
int main()
{
while (~scanf("%d%d", &N, &M) && (N || M)) {
//init
for (int i = 1; i <= N; i++) d[i] = INF;
memset(inq, false, sizeof(inq));
edges.clear();
for (int i = 1; i <= N; i++) G[i].clear();
while (!Q.empty()) Q.pop();
for (int i = 1; i <= M; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
edges.push_back(Edge(u, v, w));
G[u].push_back(edges.size() - 1);
edges.push_back(Edge(v, u, w)); //无向图,反向再输入一遍
G[v].push_back(edges.size() - 1);
}
d[1] = 0;
inq[1] = true;
Q.push(1);
//bellman-ford队列优化,这个题不用判断负环了
while (!Q.empty()) {
int p = Q.front(); Q.pop();
inq[p] = false;
//用邻接表每次只找查与这个点连接的边,而上面一个程序每次要检查所有的边
for (int i = 0; i < G[p].size(); i++) {
Edge& e = edges[G[p][i]];
if (d[p] < INF && d[p] + e.w < d[e.v]) {
d[e.v] = d[p] + e.w;
if (!inq[e.v]) {
Q.push(e.v);
inq[e.v] = true;
}
}
}
}
printf("%d\n", d[N]);
}
return 0;
}