用途:1.判断负权环。
2.在存在负权边的情况下计算单源最短路径
时间复杂度约为O(nm)
可用队列优化,队列实现:SPFA,时间复杂度O(kE)
伪代码(转自nocow):
设Dist代表S到I点的当前最短距离,Fa代表S到I的当前最短路径中I点之前的一个点的编号。开始时Dist全部为+∞,只有Dist[S]=0,Fa全部为0。
维护一个队列,里面存放所有需要进行迭代的点。初始时队列中只有一个点S。用一个布尔数组记录每个点是否处在队列中。
每次迭代,取出队头的点v,依次枚举从v出发的边v->u,设边的长度为len,判断Dist[v]+len是否小于Dist[u],若小于则改进Dist[u],将Fa[u]记为v,并且由于S到u的最短距离变小了,有可能u可以改进其它的点,所以若u不在队列中,就将它放入队尾。这样一直迭代下去直到队列变空,也就是S到所有的最短距离都确定下来,结束算法。若一个点入队次数超过n,则有负权环。
SPFA算法有两个优化算法 SLF 和 LLL: SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将j插入队首,否则插入队尾。 LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出对进行松弛操作。 SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。 在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。
基本C++(nocow)
bool Relax(long &w,long m){return m<w?(w=m,1):0;}//"松弛"操作
const long maxV=1000,maxE=999000;//最大顶点数,最大边数
long m,H[maxV],D[maxV];//m为边数,初始化为0;H为链表头,初始化为-1;D为距离
struct Edge{long z,y,w;}E[maxE];//静态邻接表,w为权,y为边终点,z为静态指针
void addE(long x,long y,long w){E[m].y=y,E[m].w=w,E[m].z=H[x],H[x]=m++;}//加一条从x指向y,权为w的边
#include<cstring>
#include<queue>
void SPFA(long x=0){//默认计算从0点出发到达其他点的最短路
bool F[maxV]={};//初始为0的bool数组表示在不在队内
std::queue<long>Q;//初始空队列
for(memset(D,0x3f,sizeof(D)),D[x]=0,F[x]=1,Q.push(x);!Q.empty();F[x]=0,Q.pop())//迭代到队列再次变空
for(long i=H[x=Q.front()],y;~i;i=E[i].z)//对于所有与x相邻的边
if(Relax(D[y=E[i].y],E[i].w+D[x])&&!F[y]) F[y]=1,Q.push(y);//如果松弛成功,则要确保y已入队
}
--------------------------------------------------------------------------------
SPFA(slf优化)
void Spfa()
{
d[S]=0;
v[S]=true;
deque <int> q;
for(q.push_back(S);!q.empty();)
{
int x=q.front();
q.pop_front();
for(int k=head[x];k!=-1;k=el[k].next)
{
int y=el[k].y;
if(d[y]>d[x]+el[k].c)
{
d[y]=d[x]+el[k].c;
if(!v[y])
{
v[y]=true;
if(!q.empty())
{
if(d[y]>d[q.front()])
q.push_back(y);
else
q.push_front(y);
}
else
q.push_back(y);
}
}
}
v[x]=false;
}
return ;
}
--------------------------------------------------------------------------------
注释版本
/*
* 单源最短路算法SPFA,时间复杂度O(kE),k在一般情况下不大于2,对于每个顶点使用可以在O(VE)的时间内算出每对节点之间的最短路
* 使用了队列,对于任意在队列中的点连着的点进行松弛,同时将不在队列中的连着的点入队,直到队空则算法结束,最短路求出
* SPFA是Bellman-Ford的优化版,可以处理有负权边的情况
* 对于负环,我们可以证明每个点入队次数不会超过V,所以我们可以记录每个点的入队次数,如果超过V则表示其出现负环,算法结束
* 由于要对点的每一条边进行枚举,故采用邻接表时时间复杂度为O(kE),采用矩阵时时间复杂度为O(kV^2)
*/
#include<cstdio>
#include<vector>
#include<queue>
#define MAXV 10000
#define INF 1000000000 //此处建议不要过大或过小,过大易导致运算时溢出,过小可能会被判定为真正的距离
using std::vector;
using std::queue;
struct Edge{
int v; //边权
int to; //连接的点
};
vector<Edge> e[MAXV]; //由于一般情况下E<<V*V,故在此选用了vector动态数组存储,也可以使用链表存储
int dist[MAXV]; //存储到原点0的距离,可以开二维数组存储每对节点之间的距离
int cnt[MAXV]; //记录入队次数,超过V则退出
queue<int> buff; //队列,用于存储在SPFA算法中的需要松弛的节点
bool done[MAXV]; //用于判断该节点是否已经在队列中
int V; //节点数
int E; //边数
bool spfa(const int st){ //返回值:TRUE为找到最短路返回,FALSE表示出现负环退出
for(int i=0;i<V;i++){ //初始化:将除了原点st的距离外的所有点到st的距离均赋上一个极大值
if(i==st){
dist[st]=0; //原点距离为0;
continue;
}
dist[i]=INF; //非原点距离无穷大
}
buff.push(st); //原点入队
done[st]=1; //标记原点已经入队
cnt[st]=1; //修改入队次数为1
while(!buff.empty()){ //队列非空,需要继续松弛
int tmp=buff.front(); //取出队首元素
for(int i=0;i<(int)e[tmp].size();i++){ //枚举该边连接的每一条边
Edge *t=&e[tmp][i]; //由于vector的寻址速度较慢,故在此进行一次优化
if(dist[tmp]+(*t).v<dist[(*t).to]){ //更改后距离更短,进行松弛操作
dist[(*t).to]=dist[tmp]+(*t).v; //更改边权值
if(!done[(*t).to]){ //没有入队,则将其入队
buff.push((*t).to); //将节点压入队列
done[(*t).to]=1; //标记节点已经入队
cnt[(*t).to]+=1; //节点入队次数自增
if(cnt[(*t).to]>V){ //已经超过V次,出现负环
while(!buff.empty())buff.pop(); //清空队列,释放内存
return false; //返回FALSE
}
}
}
}
buff.pop();//弹出队首节点
done[tmp]=0;//将队首节点标记为未入队
}
return true; //返回TRUE
} //算法结束
int main(){ //主函数
scanf("%d%d",&V,&E); //读入点数和边数
for(int i=0,x,y,l;i<E;i++){
scanf("%d%d%d",&x,&y,&l); //读入x,y,l表示从x->y有一条有向边长度为l
Edge tmp; //设置一个临时变量,以便存入vector
tmp.v=l; //设置边权
tmp.to=y; //设置连接节点
e[x].push_back(tmp); //将这条边压入x的表中
}
if(!spfa(0)){ //出现负环
printf("出现负环,最短路不存在\n");
}else{ //存在最短路
printf("节点0到节点%d的最短距离为%d",V-1,dist[V-1]);
}
return 0;
}