hdoj1317-XYZZY(floyd + bellman_ford)

题目链接

题目大意

       一个冒险家从1号房间出发时,有100点能量值,然后题目中给出从一个房间能到达另一个房间的路,然后到达每个房间能获得的能量值(-100到100),当冒险家的能量值小于或等于0时游戏结束,然后判断是否能达到房间n;

思路

1.这题其实就是求最长路的问题;
2.首先我们用floyd算法来求各房间的连通性;
3.然后用bellman_frod算法来求解到达各房间的能量值;

code

#include <iostream>
#include <fstream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int INF = 0x3f3f3f;

struct Edge
{   
    int from, to;
};

int w[105];
int dist[105], vis[105], map[105][105];
int n, eNum;
Edge e[5000];

void floyd(){
    for(int k = 1; k <= n; ++ k) {
        for(int i = 1; i <= n; ++ i) {
            if(map[i][k]) {
                for(int j = 1; j <= n; ++ j) {
                    map[i][j] |= (map[i][k] & map[k][j]);
                }
            }
        }
    }
}

bool bellman_ford() {
    for(int i = 0; i <= n; i ++) {
        dist[i] = -INF;
    }
    dist[1] = 100;
    for(int i = 1; i < n; ++ i) {
        for(int j = 0; j < eNum; ++ j) {
            int from = e[j].from;
            int to = e[j].to;
            if(dist[to] < dist[from] + w[to] && dist[from] + w[to] > 0) {
                dist[to] = dist[from] + w[to];
            }
        }
    }
    if(dist[n] > 0) {        //当到达n房间的能量值为正时赢得游戏
        return true;
    }
    for(int i = 0; i < eNum; ++ i) {
        int from = e[i].from;
        int to = e[i].to;
        //存在正环且正环上存在房间to能到达房间n
        if(dist[from] + w[to] > dist[to] && dist[from] + w[to] > 0 && map[to][n]) {
            return true;
        }
    }
    return false;
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
    //ifstream cin("data.in");
    while(cin >> n && n != -1) {
        eNum = 0;
        memset(map, 0, sizeof(map));
        for(int i = 1; i <= n; ++ i) {
            int num;
            cin >> w[i] >> num;
            for(int j = 0; j < num; ++ j) {
                int to;
                cin >> to;
                e[eNum].to= to;
                e[eNum++].from = i;
                map[i][to] = 1;
            }
        }
        floyd();
        if(bellman_ford()) {
            cout << "winnable" << endl;
        }
        else{
            cout << "hopeless" << endl;
        }
    }
    return 0;
}
    原文作者:Bellman - ford算法
    原文地址: https://blog.csdn.net/zq216991/article/details/53469898
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞