算法不用细说,学过数据结构的同仁们都知道,前两天用到,用C#写出来了。
using System;
using System.Collections.Generic;
using System.Text;
namespace ShortedPath
{
class Program
{
static int length=6;
static string[] shortedPath=new string[length];
static int noPath=2000;
static int MaxSize = 1000;
static int [,] G={{noPath,noPath,10,noPath,30,100},{noPath,noPath,5,noPath,noPath,noPath},{noPath,noPath,noPath,50,noPath,noPath},{noPath,noPath,noPath,noPath,noPath,10},{noPath,noPath,noPath,20,noPath,60},{noPath,noPath,noPath,noPath,noPath,noPath}};
static string[] PathResult = new string[length];
static int[] path1 = new int[length];
static int[,] path2 = new int[length, length];
static int[] distance2 = new int[length];
static void Main(string[] args)
{
int dist1= getShortedPath(G,0,5,path1);
Console.WriteLine(“点0到点5路径:”);
for (int i=0; i < path1.Length; i++)
Console.Write(path1[i].ToString()+” “);
Console.WriteLine(“长度:” + dist1);
int [] pathdist = getShortedPath(G, 0, path2);
Console.WriteLine(“点0到任意点的路径:”);
for (int j = 0; j < pathdist.Length; j++)
{
Console.WriteLine(“点0到” + j + “的路径:”);
for (int i = 0; i < length; i++)
Console.Write(path2[j, i].ToString() + ” “);
Console.WriteLine(“长度:” + pathdist[j]);
}
Console.ReadKey();
}
//从某一源点出发,找到到某一结点的最短路径
static int getShortedPath(int[,]G, int start, int end,int [] path)
{
bool[] s = new bool[length]; //表示找到起始结点与当前结点间的最短路径
int min; //最小距离临时变量
int curNode=0; //临时结点,记录当前正计算结点
int[] dist = new int[length];
int[] prev = new int[length];
//初始结点信息
for (int v = 0; v < length; v++)
{
s[v] = false;
dist[v] = G[start, v];
if (dist[v] > MaxSize)
prev[v] = 0;
else
prev[v] = start;
}
path[0] = end;
dist[start] = 0;
s[start] = true;
//主循环
for (int i = 1; i < length; i++)
{
min = MaxSize;
for (int w = 0; w < length; w++)
{
if (!s[w] && dist[w] < min)
{
curNode = w;
min = dist[w];
}
}
s[curNode] = true;
for (int j = 0; j < length; j++)
if (!s[j] && min + G[curNode, j] < dist[j])
{
dist[j] = min + G[curNode, j];
prev[j] = curNode;
}
}
//输出路径结点
int e = end, step = 0;
while (e != start)
{
step++;
path[step] = prev[e];
e = prev[e];
}
for (int i = step; i > step/2; i–)
{
int temp = path[step – i];
path[step – i] = path[i];
path[i] = temp;
}
return dist[end];
}
//从某一源点出发,找到到所有结点的最短路径
static int[] getShortedPath(int[,] G, int start, int[,] path)
{
int[] PathID = new int[length];//路径(用编号表示)
bool[] s = new bool[length]; //表示找到起始结点与当前结点间的最短路径
int min; //最小距离临时变量
int curNode = 0; //临时结点,记录当前正计算结点
int[] dist = new int[length];
int[] prev = new int[length];
//初始结点信息
for (int v = 0; v < length; v++)
{
s[v] = false;
dist[v] = G[start, v];
if (dist[v] > MaxSize)
prev[v] = 0;
else
prev[v] = start;
path[v,0] = v;
}
dist[start] = 0;
s[start] = true;
//主循环
for (int i = 1; i < length; i++)
{
min = MaxSize;
for (int w = 0; w < length; w++)
{
if (!s[w] && dist[w] < min)
{
curNode = w;
min = dist[w];
}
}
s[curNode] = true;
for (int j = 0; j < length; j++)
if (!s[j] && min + G[curNode, j] < dist[j])
{
dist[j] = min + G[curNode, j];
prev[j] = curNode;
}
}
//输出路径结点
for (int k = 0; k < length; k++)
{
int e = k, step = 0;
while (e != start)
{
step++;
path[k,step] = prev[e];
e = prev[e];
}
for (int i = step; i > step / 2; i–)
{
int temp = path[k,step – i];
path[k,step – i] = path[k,i];
path[k,i] = temp;
}
}
return dist;
}
}
}