图的遍历(dfs、bfs、最短路、最小生成树、拓扑排序)

代码如下:

#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
#define MAXSIZE 100
bool vis[MAXSIZE+5];
int in[MAXSIZE+11];		//入度 
int f[MAXSIZE+11];		//并查集指向根节点 
typedef struct
{
	int x,y;
	int cost;
}road[(MAXSIZE*MAXSIZE+MAXSIZE)>>1],Road;

typedef struct		//邻接矩阵 
{
	int arcs[MAXSIZE+5][MAXSIZE+5];
	int vexnum,arcnum;
	void init()
	{
		CLR(this->arcs,0);
		this->arcnum = this->vexnum = 0;
	}
}AMGraph;

typedef struct ArcNode		//邻接表,顶点序号用数字表示 
{
	int adjvex;
	struct ArcNode *nextarc;
}AdjList[MAXSIZE+5],AdjNode;
typedef struct
{
	AdjList vectices;
	int vexnum,arcnum;		//顶点、边数 
	void init()		//初始化 
	{
		for (int i = 1 ; i <= MAXSIZE ; i++)
			this->vectices[i].nextarc = NULL;
		this->arcnum = this->vexnum = 0;
	}
	void Insert(int pos,AdjNode &t)		//在pos点后连接t节点
	{
		t.nextarc = this->vectices[pos].nextarc;
		this->vectices[pos].nextarc = &t;
	}
}ALGraph;

typedef struct Queue		//队列 
{
	int data;
	struct Queue *next;
	struct Queue *end;		//队列末节点 
	void init()
	{
		this->end = this;
		this->next = NULL;
	}
	int GetTop()
	{
		return this->next->data;
	}
	bool Empty()
	{
		if (this->next == NULL)
			return true;
		return false;
	}
	void Pop()
	{
		Queue *t = this->next;
		this->next = this->next->next;
		free(t);
		if (this->Empty())		//如果队列为空,队尾指针指向自己 
			this->end = this;
	}
	void Push(int x)
	{
		Queue *t;
		t = (Queue *)malloc(sizeof(Queue));
		t->data = x;
		t->next = NULL;
		this->end->next = t;
		this->end = t;
	}
}Queue;

void dfsSearch(AMGraph &mm,int pos)		//递归求DFS 
{
	printf ("%d ",pos);
	vis[pos] = true;
	for (int i = 1 ; i <= mm.vexnum ; i++)
	{
		if (!vis[i] && mm.arcs[pos][i])
			dfsSearch(mm,i);
	}
}
void DFS(AMGraph &mm)
{
	printf ("该无向图的DFS序为:");
	dfsSearch(mm,1);
	puts("");
}

void BFS(AMGraph &mm)
{
	printf ("该无向图的BFS序为:");
	CLR(vis,false);
	Queue q;
	q.init();
	q.Push(1);
	vis[1] = true;
	while (!q.Empty())
	{
		int pr = q.GetTop();
		q.Pop();
		printf ("%d ",pr);
		for (int i = 1 ; i <= mm.vexnum ; i++)
		{
			if (!vis[i] && mm.arcs[pr][i])		//没有遍历过,并且存在边 
			{
				q.Push(i);
				vis[i] = true;
			}
		}
	}
	printf ("\n"); 
}

void dijkstra(AMGraph &mm)
{
	CLR(vis,false);
	int dis[MAXSIZE+5];
	CLR(dis,INF);
	dis[1] = 0;
	while (1)
	{
		int v = -1;
		for (int i = 1 ; i <= mm.vexnum ; i++)
		{
			if (!vis[i] && (v == -1 || dis[i] < dis[v]))
				v = i;
		}
		if (v == -1)
			break;
		vis[v] = true;		//标记 
		for (int i = 1 ; i <= mm.vexnum ; i++)
		{
			if (vis[i] == false && mm.arcs[v][i])
				dis[i] = min(dis[i] , dis[v] + mm.arcs[v][i]);
		}
	}
	printf ("%d\n",dis[mm.vexnum] == INF ? -1 : dis[mm.vexnum]);		//不存在最短路径输入-1 
}
void ShortestRoad(AMGraph &mm)
{
	printf ("从1点到%d点的最短路径为(不存在输出-1):",mm.vexnum);
	dijkstra(mm);
}

int find(int x)		//递归寻根节点并路径压缩 
{
	if (x != f[x])
		f[x] = find(f[x]);
	return f[x];
}
bool join(int x,int y)		//合并节点
{
	int fx,fy;
	fx = find(x);
	fy = find(y);
	if (fx != fy)
	{
		f[fx] = fy;
		return true;
	}
	return false;
}
bool cmp(Road a,Road b)
{
	return a.cost < b.cost;
}
void Kruskal(AMGraph &mm)
{
	for (int i = 1 ; i <= mm.vexnum ; i++)
		f[i] = i;		//初始化并查集根节点 
	int ant = 0;
	road d;
	for (int i = 1 ; i < mm.vexnum ; i++)
	{
		for (int j = i + 1 ; j <= mm.vexnum ; j++)
		{
			if (mm.arcs[i][j])
			{
				d[ant].x = i;
				d[ant].y = j;
				d[ant++].cost = mm.arcs[i][j];
			}
		}
	}
	sort(d,d+ant,cmp);
	int cost = 0;		//最小花费 
	for (int i = 0 ; i < ant ; i++)
	{
		if (join(d[i].x , d[i].y))
			cost += d[i].cost;
	}
	printf ("%d\n",cost);
}
void MiniSpanTree(AMGraph &mm)
{
	printf ("最小生成树的最小花费为:");
	Kruskal(mm);
}

void Topo(ALGraph &am)
{
	printf ("拓扑排序结果为:");
	Queue q;
	q.init();
	for (int i = 1 ; i <= am.vexnum ; i++)
	{
		if (!in[i])
			q.Push(i);
	}
	while (!q.Empty())
	{
		int pr = q.GetTop();
		printf ("%d ",pr);
		q.Pop();
		in[pr] = -1;
		AdjNode *t;
		t = am.vectices[pr].nextarc;
		while (t != NULL)
		{
			in[t->adjvex]--;
			if (!in[t->adjvex])
				q.Push(t->adjvex);
			t = t->nextarc;
		}
	}
	puts("");
}

int main()
{
	int arcnum,vexnum;
	AMGraph mm;		//Matrix map
	ALGraph am;		//Adj map
	mm.init() , am.init();
	printf ("请输入顶点数的边数:");
	scanf ("%d %d",&vexnum,&arcnum);
	am.arcnum = mm.arcnum = arcnum;
	am.vexnum = mm.vexnum = vexnum;
	printf ("请输入%d条边(DFS、BFS、最短路、最小生成树中存为无向图 ; 拓扑排序用有向图):\n",arcnum);
	for (int i = 1 ; i <= arcnum ; i++)		//读入数据 
	{
		int x,y,z;		//顶点,边的权值
		scanf ("%d %d %d",&x,&y,&z);
		mm.arcs[x][y] = mm.arcs[y][x] = z;
		AdjNode t;
		t.adjvex = y;
		t.nextarc = NULL;
		in[y]++;
		am.Insert(x,t);		//插入邻接表中 
	}
	DFS(mm);
	BFS(mm);
	ShortestRoad(mm);
	MiniSpanTree(mm);
	Topo(am);
	return 0;
}

/*
1 3 1
3 7 1
7 6 1
6 3 1
1 2 1
2 5 1
5 8 1
8 4 1
4 2 1
*/

    原文作者:数据结构之图
    原文地址: https://blog.csdn.net/wyg1997/article/details/53056917
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞