数据结构与算法分析——c语言描述 第四章树 B-树
2016-04-14创建:
好久没更新博客,这7天断断续续写B树,学汇编,学计算机组成原理。
B树好难啊,还没写完。只写了25%。。。
插入剩下两种情况没写:
1.祖父未满,父亲满,儿子满。
2.祖父满,父亲满,儿子满。
想不到怎么写。这两个情况有两种相同的地方,把父亲拆成两个。
父亲拆成两个可以这样写:像父亲未满,儿子满那样,新建一个儿子,移动儿子间的元素,插入元素,父亲拆成两个(更新儿子数量,儿子指针,更新索引)。
接下来
对于第一个情况:
告诉祖父要新建儿子(这里又要像伸展树那样用结构了,告诉祖父要增加儿子,要包括新儿子在儿子分支的左边还是右边,和新儿子的指针),祖父要更新儿子指针,更新数量,索引。
对于第二个情况:
祖父满了。拆成两个祖父,告诉曾祖父多了一个儿子。这个情况和第二个情况一样。
2016.4.15更新
这个B树8天。终于把插入写完了。写这个B树是真的真的要狗带了。写得我很烦躁,感到智商非常不够用。不吐槽了。说一说收获。
写代码是用脑子想出来的,不是一脑门光写,不断测试,不断改,不断重复循环。这个办法虽然很快来结果,但是效率很低,并且只能应付简单的编程,一遇到难的就傻了。整天用调试跟踪和printfh输出调试结果,这样效率非常低非常低。
昨天和今天我意识到这个问题。我先关了电脑。在几张纸上不断写出所有情景下插入的情况,非常详细的。然后从这么多过程中提取相同的过程,做成7,8个私有函数,这些函数(过程)都是经常需要用到的。我手写了这些函数的声明表,想该传入什么参数,返回类型。
写完后稍微改改,没怎么调试。别怕,想出来,深度思考是痛苦的,但这是人和动物的区别。
有一个地方感觉处理不是很好。因为树的结构经常更改,所以insert要像伸展树调用internalinsert,接口的insert是用于假如insert插入多了一个兄弟,然后要构建两者的父亲。我就是复制了相同的代码。更改了返回新儿子的部分。不知道有没有更优雅的代码组织方式。大神请指教!
2016.4.19更新
删除很快就写完了,和插入差不多。代码是想出来的,不是不停debug弄出来的。看着曾经的日志还写着“不停debug是一个不停的思考和创作过程”。。。确实这样,但没必要这么折腾,况且这方法对简单的编程才有效,难的话连续弄几天也弄不出来。正确的姿势是先想过程,从全局的角度想想需要定义哪些函数。
到了学期中就是事多。。。。加上自己确实是懒了。不能再这样下去。
btree.h
typedef int ElementType;
#ifndef _B_Tree_h
#define _B_Tree_h
struct BtreeNode;
typedef struct BtreeNode* PtrToNode;
typedef struct BtreeNode* Btree;
Btree createBtree();
void makeEmpty(Btree t);
PtrToNode find(ElementType X, Btree t);
Btree insert(ElementType X, Btree t);
Btree Delete(ElementType X, Btree t);
void Dir(Btree t);
#endif
btree.c
#include"btree.h"
#include<stdlib.h>
#include"fatal.h"
struct BtreeNode;
#define M 3
struct BtreeNode {
int type;
int sonNum;//儿子数量,或当前拥有数据的数量(最底层)
PtrToNode PtrToSon[M];
ElementType elem[M];
};
static int binarySearch(PtrToNode bottomNode, ElementType X) {//对分搜索
if (bottomNode->type != 2)
Error("ERROR!");
ElementType* arr = bottomNode->elem;
int n = bottomNode->sonNum;
if (n > 0) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = (high + low) / 2;
if (X < arr[mid]) {
high = mid - 1;
}
else if (X > arr[mid]) {
low = mid + 1;
}
else
return mid;
}
return -1;
}
return -1;
}
static int getSonBranch(PtrToNode Node, ElementType X) {
ElementType* arr = Node->elem;
int n = Node->sonNum;
if (n == 1)
return 0;
else if (n == 2) {
if (X < arr[0])
return 0;
else
return 1;
}
else if (n >= 2) {
int low = 0;
int high = n - 1 - 1;//第一个分支没有索引
while (low <= high) {
int mid = (high + low) / 2;
if (X < arr[mid]) {
high = mid - 1;
}
else if (X > arr[mid]) {
low = mid + 1;
}
else
return mid + 1;//第一个分支没有索引
}
return high + 1;//退出循环,此时high在左,low在右,X位于high和low的值之间
}
else {
Error("GET SON BRANCH ERROR");
}
}
static void binaryInsert(ElementType arr[], int n, ElementType X) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (arr[mid] < X) {
low = mid + 1;
}
else if (arr[mid] > X)
high = mid - 1;
}
while (arr[low] < X&& low < n) {
low++;
}
for (int i = n; i > low; i--) {
arr[i] = arr[i - 1];
}
arr[low] = X;
}
static void binaryInsertForBottomNode(PtrToNode bottomNode, ElementType X) {//对分插入
if (bottomNode->type != 2)
Error("eror!");
ElementType* arr = bottomNode->elem;
int n = bottomNode->sonNum;
if (n > 0) {
binaryInsert(arr, n, X);
}
else
arr[0] = X;
bottomNode->sonNum++;
}
static PtrToNode allocNode(int type) {//0为内部节点 1为叶子 2为底层节点
PtrToNode p = malloc(sizeof(struct BtreeNode));
if (p == NULL)
Error("OUT OF SPACE!!");
p->type = type;
p->sonNum = 0;
return p;
}
static void updateIndex(PtrToNode p) {
if (p->sonNum >= 2) {
for (int i = 0; i < p->sonNum - 1; i++) {
PtrToNode son = p->PtrToSon[i + 1];
while (son->type != 2) {
son = son->PtrToSon[0];
}
p->elem[i] = son->elem[0];
}
}
}
static PtrToNode insertAndSplitBottomNode(PtrToNode b1, ElementType X) {
if (b1->sonNum != 3)
Error("ERROR!");
PtrToNode b2 = allocNode(2);
ElementType tempElem[4];
for (int i = 0; i < 3; i++)
tempElem[i] = b1->elem[i];
binaryInsert(tempElem, 3, X);
for (int i = 0; i < 2; i++)
b1->elem[i] = tempElem[i];
for (int i = 0; i < 2; i++)
b2->elem[i] = tempElem[i + 2];
b1->sonNum = b2->sonNum = 2;
return b2;
}
static PtrToNode split(Btree father, PtrToNode newSon, int sonBranch) {
PtrToNode allSon[4];
int i, j;
for (i = 0, j = 0; j <= sonBranch; i++, j++)
allSon[i] = father->PtrToSon[j];
allSon[i++] = newSon;
for (; j < father->sonNum; i++, j++)
allSon[i] = father->PtrToSon[j];
PtrToNode newFater = allocNode(father->type);
father->sonNum = 2;
father->PtrToSon[0] = allSon[0];
father->PtrToSon[1] = allSon[1];
updateIndex(father);
newFater->sonNum = 2;
newFater->PtrToSon[0] = allSon[2];
newFater->PtrToSon[1] = allSon[3];
updateIndex(newFater);
return newFater;
}
static void insertPtrToSon(PtrToNode father, PtrToNode newSon, int sonBranch) {
if (father->sonNum == 0) {
father->PtrToSon[0] = newSon;
}
else {
int i;
for (i = father->sonNum; i > sonBranch + 1; i--) {
father->PtrToSon[i] = father->PtrToSon[i - 1];
}
father->PtrToSon[sonBranch + 1] = newSon;
}
father->sonNum++;
}
Btree createBtree() {
Btree t = malloc(sizeof(struct BtreeNode));
if (t == NULL)
Error("OUT OF MEMORY!");
t->sonNum = 0;
t->type = 1;//空树,根节点也是树叶
return t;
}
void makeEmpty(Btree t) {
if (t->type) {
for (int i = 0; i < t->sonNum; i++)
free(t->PtrToSon[i]);
free(t);
}
else {
for (int i = 0; i < t->sonNum; i++) {
makeEmpty(t->PtrToSon[i]);
}
free(t);
}
}
PtrToNode find(ElementType X, Btree t) {
if (t->type == 0) {//内部节点
int p = getSonBranch(t, X);
return find(X, t->PtrToSon[p]);
}
else {
int p;
if (t->sonNum == 0)//刚创建树的时候,空
return NULL;
else if (t->sonNum == 1) {
p = binarySearch(t->PtrToSon[0], X);
if (p == -1)
return NULL;
else
return t->PtrToSon[0];
}
else {
p = getSonBranch(t, X);//选择儿子分支
int tempCursor = binarySearch(t->PtrToSon[p], X);//在最底层中查找
if (tempCursor == -1)
return NULL;
return t->PtrToSon[p];
}
}
}
static void insertElem_LeafEmpty(ElementType X, Btree t) {
PtrToNode newSon = allocNode(2);
binaryInsertForBottomNode(newSon, X);
insertPtrToSon(t, newSon, 0);
}
static void insertElem_LeafSonNotFull(ElementType X, Btree t, int sonChoice) {
binaryInsertForBottomNode(t->PtrToSon[sonChoice], X);
updateIndex(t);
}
static Btree insert_internal(ElementType X, Btree t);
static void insertElem_LeafNotFull_LeafSonFull(ElementType X, Btree t, int sonBranch) {
PtrToNode newSon = insertAndSplitBottomNode(t->PtrToSon[sonBranch], X);
insertPtrToSon(t, newSon, sonBranch);
updateIndex(t);
}
static PtrToNode insertElem_LeafFull_LeafSonFull(ElementType X, Btree t, int sonBranch) {
PtrToNode newSon = insertAndSplitBottomNode(t->PtrToSon[sonBranch], X);
PtrToNode newFather = split(t, newSon, sonBranch);
return newFather;
}
static Btree insert_internal(ElementType X, Btree t) {
if (t->type == 0) {//非叶子
int sonBranch = getSonBranch(t, X);
PtrToNode newSon = insert_internal(X, t->PtrToSon[sonBranch]);
if (newSon) {
if (t->sonNum < M) {
insertPtrToSon(t, newSon, sonBranch);
updateIndex(t);
return NULL;
}
else {
PtrToNode newfather = split(t, newSon, sonBranch);
return newfather;
}
}
else {
return NULL;
}
}
else if (t->type == 1) {//叶子
if (t->sonNum == 0) {
insertElem_LeafEmpty(X, t);
return NULL;
}
else {
int sonBranch = getSonBranch(t, X);//选择儿子分支
int XCursor = binarySearch(t->PtrToSon[sonBranch], X);//在儿子中查找
if (XCursor == -1) {//不存在X
if (t->PtrToSon[sonBranch]->sonNum < M) {//叶子的儿子数量未满
insertElem_LeafSonNotFull(X, t, sonBranch);
return NULL;
}
else if (t->sonNum < M && t->PtrToSon[sonBranch]->sonNum == M) {//父亲未满,儿子满
insertElem_LeafNotFull_LeafSonFull(X, t, sonBranch);
return NULL;
}
else {//父亲满,儿子满
PtrToNode newfather = insertElem_LeafFull_LeafSonFull(X, t, sonBranch);
return newfather;
}
}
else
return NULL;//已存在X
}
}
else {
Error("type error");
}
}
Btree insert(ElementType X, Btree t) {
if (t->type == 0) {//非叶子
int sonBranch = getSonBranch(t, X);
PtrToNode newSon = insert_internal(X, t->PtrToSon[sonBranch]);
if (newSon) {
if (t->sonNum < M) {
insertPtrToSon(t, newSon, sonBranch);
updateIndex(t);
return t;
}
else {
PtrToNode newfather = split(t, newSon, sonBranch);
PtrToNode p = allocNode(0);
insertPtrToSon(p, t, 0);
insertPtrToSon(p, newfather, 0);
updateIndex(p);
return p;
}
}
else {
return t;
}
}
else if (t->type == 1) {//叶子
if (t->sonNum == 0) {
insertElem_LeafEmpty(X, t);
return t;
}
else {
int sonBranch = getSonBranch(t, X);//选择儿子分支
int XCursor = binarySearch(t->PtrToSon[sonBranch], X);//在儿子中查找
if (XCursor == -1) {//不存在X
if (t->PtrToSon[sonBranch]->sonNum < M) {//叶子的儿子数量未满
insertElem_LeafSonNotFull(X, t, sonBranch);
return t;
}
else if (t->sonNum < M && t->PtrToSon[sonBranch]->sonNum == M) {//父亲未满,儿子满
insertElem_LeafNotFull_LeafSonFull(X, t, sonBranch);
return t;
}
else {//父亲满,儿子满
PtrToNode newfather = insertElem_LeafFull_LeafSonFull(X, t, sonBranch);
PtrToNode p = allocNode(0);
insertPtrToSon(p, t, 0);
insertPtrToSon(p, newfather, 0);
updateIndex(p);
return p;
}
}
else
return t;//已存在X
}
}
else
Error("type error!");
}
void Dir(Btree t) {
if (t->type == 0) {
printf("\n");
for (int i = 0; i < t->sonNum; i++) {
Dir(t->PtrToSon[i]);
}
}
else if (t->type == 1) {
for (int i = 0; i < t->sonNum; i++) {
if(i==1||i==2)
printf("%d: ", t->elem[i-1]);
for (int j = 0; j < t->PtrToSon[i]->sonNum; j++) {
printf("%d ", t->PtrToSon[i]->elem[j]);
}
printf(" ");
}
printf("\n");
}
}
static void deleteAndFreePtrToSon(PtrToNode father, int sonBranch) {
free(father->PtrToSon[sonBranch]);
for (int i = sonBranch; i < father->sonNum - 1; i++) {
father->PtrToSon[i] = father->PtrToSon[i + 1];
}
father->sonNum--;
}
static void deletePtrToSon(PtrToNode father, int sonBranch) {
for (int i = sonBranch; i < father->sonNum - 1; i++) {
father->PtrToSon[i] = father->PtrToSon[i + 1];
}
father->sonNum--;
}
static void binaryDeleteForBottomNode(PtrToNode bottomNode, ElementType X) {
int p = binarySearch(bottomNode, X);
if (p != -1) {
for (int i = p; i < bottomNode->sonNum - 1; i++) {
bottomNode->elem[i] = bottomNode->elem[i + 1];
}
bottomNode->sonNum--;
}
}
static int delete_internal(ElementType X, Btree t) {//返回类型0表示儿子够,1表示儿子不够
if (t->type == 0) {//内部节点
int p = getSonBranch(t, X);
int isSon_NotEnough_grandson = delete_internal(X, t->PtrToSon[p]);
if (isSon_NotEnough_grandson == 0)
return 0;
else {////
int brother;
if (p + 1 < t->sonNum) {
brother = p + 1;
}
else {
brother = p - 1;
}
if (t->PtrToSon[brother]->sonNum == 2) {
if (p < brother) {
insertPtrToSon(t->PtrToSon[brother], t->PtrToSon[p]->PtrToSon[0], -1);
}
else
insertPtrToSon(t->PtrToSon[brother], t->PtrToSon[p]->PtrToSon[0], 1);
updateIndex(t->PtrToSon[brother]);//这个顺序一定要在前面,因为deleteAndFreePtrToSon移动了儿子指针,所以要先更新
deleteAndFreePtrToSon(t, p);
updateIndex(t);
return t->sonNum == 1;
}
else if (t->PtrToSon[brother]->sonNum == 3) {
if (p < brother) {
insertPtrToSon(t->PtrToSon[p], t->PtrToSon[brother]->PtrToSon[0], 0);
deletePtrToSon(t->PtrToSon[brother], 0);
}
else {
insertPtrToSon(t->PtrToSon[p], t->PtrToSon[brother]->PtrToSon[2],-1);
deletePtrToSon(t->PtrToSon[brother], 2);
}
updateIndex(t->PtrToSon[p]);
updateIndex(t->PtrToSon[brother]);
updateIndex(t);
return 0;
}
else {
Error("what the hell?");
return 0;
}
}
}
else if (t->type == 1) {//叶子
int p;
if (t->sonNum == 0)//刚创建树的时候,空
return 0;
if (t->sonNum == 1) {
p = 0;
}
else {
p = getSonBranch(t, X);//选择儿子分支
}
binaryDeleteForBottomNode(t->PtrToSon[p], X);
if (t->PtrToSon[p]->sonNum == 0) {
deleteAndFreePtrToSon(t, p);
return 0;
}
else if (t->PtrToSon[p]->sonNum == 1) {
int brother;
if (p > 0) {
brother = p - 1;
}
else if (p + 1 < t->sonNum) {
brother = p + 1;
}
else {//只有一个儿子,无兄弟
return 0;
}
if (t->PtrToSon[brother]->sonNum == 3) {
if (brother < p) {
t->PtrToSon[p]->elem[1] = t->PtrToSon[p]->elem[0];
t->PtrToSon[p]->elem[0] = t->PtrToSon[brother]->elem[2];
t->PtrToSon[p]->sonNum++;
t->PtrToSon[brother]->sonNum--;
}
else {
t->PtrToSon[p]->elem[1] = t->PtrToSon[brother]->elem[0];
for (int i = 0; i < 2; i++) {
t->PtrToSon[brother]->elem[i] = t->PtrToSon[brother]->elem[i + 1];
}
t->PtrToSon[p]->sonNum++;
t->PtrToSon[brother]->sonNum--;
}
updateIndex(t);
return 0;
}
else if (t->PtrToSon[brother]->sonNum == 2) {
binaryInsertForBottomNode(t->PtrToSon[brother], t->PtrToSon[p]->elem[0]);
deleteAndFreePtrToSon(t, p);
updateIndex(t);
return t->sonNum == 1;
}
else {
Error("what the hell?");
return 0;
}
}
else//底层节点关键字数目为2
return 0;
}
else {
Error("what the hell?");
return 0;
}
}
Btree Delete(ElementType X, Btree t) {
if (delete_internal(X, t)) {
if (t->type == 0) {
Btree newRoot = t->PtrToSon[0];
free(t);
return newRoot;
}
}
updateIndex(t);
return t;
}
main.c
#include"btree.h"
#include<stdio.h>
#include<stdlib.h>
#define M 3
struct BtreeNode {
int type;
int sonNum;//儿子数量,或当前拥有数据的数量(最底层)
PtrToNode PtrToSon[M];
ElementType elem[M];
};
int main() {
Btree t = createBtree();
for (int i = 0; i < 25; i++)
t = insert(i, t);
Dir(t);
printf("\n");
for (int i = 0; i < 12; i++)
t = Delete(i, t);
Dir(t);
}