题目描述:
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
题目解释:
给出一个排序好的数组,将它转换成平衡二叉树。
平衡二叉树的左右子树高度不能超过1.
题目解法:
1.我的解法:其实想法很简单,平衡二叉树,其左子树的值都小于根节点,右子树的值都大于根节点。那么从数组的中间取值作为根节点,左子树是从数组的0到中间位置 – 1,右子树是从中间位置 + 1到末尾,然后递归生成左右子树即可。代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if(nums.length == 0) return null;
int index = nums.length / 2;
TreeNode node = new TreeNode(nums[index]);
int[] leftArray = new int[index];
for(int i = 0;i<leftArray.length;i++) {
leftArray[i] = nums[i];
}
node.left = sortedArrayToBST(leftArray);
int[] rightArray = new int[nums.length - index - 1];
for(int i = 0;i<rightArray.length;i++) {
rightArray[i] = nums[index + 1 + i];
}
node.right = sortedArrayToBST(rightArray);
return node;
}
}