我的github:xjwhhh的github
希望大家多多关注,共同进步
Java集合类源码分析(一):Collcetion接口
Java集合类源码分析(二):List接口
Java集合类源码分析(三):AbstractList类
Java集合类源码分析(四):ArrayList&LinkedList
java集合类源码分析(五):Map接口
Java集合类源码分析(六):AbstractMap类
Java集合类源码分析(七):HashMap&LinkedHashMap
Java集合类源码分析(八):AbstractSet类
Java集合类源码分析(九):HashSet&LinkedHashSet
ArrayList源码分析
ArrayList可以放入任何类型的元素
ArrayList不是同步的
/**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* Shared empty array instance used for empty instances.
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
*/
transient Object[] elementData; // non-private to simplify nested class access
构造函数,如果传入的初始容量大于0,就构造一个数组,否则使用类里本来有的静态空数组
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
使用另一个静态空数组
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
构造一个ArrayList,含有集合里的所有元素,顺序与集合迭代器返回的元素顺序相同
如果集合为空,则直接使用静态空数组
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
将列表的容量调整到与元素数量相同,可以用来最小化存储空间
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
增大列表容量
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY;
if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
将新的容量变为原来容量的1.5倍。
但是需要对扩容后的容量进行检验。共有两种可能
1.得到的容量比需要的容量小,即溢出。
2.得到的容量超过了规定的最大容量,进入hugeCapacity中,如果需要的容量小于0,抛出内存溢出异常,如果需要的容量比规定的最大容量大,那么最大容量只能是 Integer.MAX_VALUE。
最后将elementData 通过Array的复制拷贝方法进行了扩容。
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
返回一个原列表的浅拷贝,即没有拷贝元素
public Object clone() {
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
返回一个含有列表所有元素的数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
调用ensureCapacityInternal(size + 1)
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
删除列表中第一个与参数元素相同的元素
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
用来删除的私有方法,跳过边界检查,也不返回删除的元素
ArrayList对列表的结构性修改,都是调用System.arrayCopy拷贝一部分不变的元素实现的
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
根据参数complement决定是保存还是删除列表中与参数列表中相同的元素
首先对集合中的对象数组进行了一次复制,然后将数组中的元素依次与collection进行对比。try{}块的结果就是得到了一个数组,数组前w位元素或与collection相同(complement=true的时候)或不同(complement=false)。
下面来看finally,先来看第二个if{}代码块,它的作用就是把数组中w以后的元素全部变为null值,让gc来回收。
现在回到finally的第一个if中,看条件(r != size),似乎永远不会满足这个条件吧。上面的for循环一直r++啊,可是别忘了,c.contains(elementData[r])这句话是有可能抛出异常的,如果一旦类型不匹配,就会抛出异常 进入finally中。
这个方法,如果没有删除任何数据,那么将会返回false。
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
}
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
将列表写入输出流
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
由输入流获得列表信息
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}
迭代所有,每个元素都执行Consumer中定义的方法,可能会改变元素的值
@Override
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
删除符合过滤器要求的元素
@Override
public boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
this.size = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
替换所有元素,即对所有元素进行operator定义的操作
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
排序
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
LinkedList源码分析
双向链表
不是同步的
transient int size = 0;
//指向第一个结点的指针
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node first;
//指向最后一个结点的指针
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node last;
public LinkedList() {
}
使用集合创建列表,列表含有集合中所有元素,顺序与集合迭代器返回的元素顺序相同
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
将参数元素连接到首位
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
将参数元素连接到最后一位
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
在第二个参数节点之前插入一个新节点
1. 创建newNode节点,将newNode的后继指针指向succ,前驱指针指向pred
2. 将succ的前驱指针指向newNode
3. 根据pred是否为null,进行不同操作。
– 如果pred为null,说明该节点插入在头节点之前,要重置first头节点
– 如果pred不为null,那么直接将pred的后继指针指向newNode即可
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
解除第一个元素的链接
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
解除最后一个元素的链接
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
删除某个元素的链接
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
返回列表的第一个节点
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
返回列表的最后一个节点
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
删除并返回列表的第一个节点
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
删除并返回列表的最后一个节点
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}
将参数元素连接到首位
public void addFirst(E e) {
linkFirst(e);
}
将参数元素连接到最后一位
public void addLast(E e) {
linkLast(e);
}
将参数元素连接到列表最后一位,与addLast效果相同
public boolean add(E e) {
linkLast(e);
return true;
}
如果列表中含有参数元素,则删除它的第一次出现
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
将集合中的元素全部加入列表中
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}
在指定位置处,插入集合中的所有元素,顺序与集合迭代器返回元素顺序相同
1. 检查index索引范围
2. 得到集合数据
3. 得到插入位置的前驱和后继节点
4. 遍历数据,将数据插入到指定位置
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
- 检查index的范围,否则抛出异常
- 如果插入位置是链表尾部,那么调用linkLast方法
如果插入位置是链表中间,那么调用linkBefore方法
public void add(int index, E element) {
checkPositionIndex(index);if (index == size) linkLast(element); else linkBefore(element, node(index));
}
返回链表的头部结点
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
返回链表的头部结点
public E element() {
return getFirst();
}
删除并返回链表的头部结点
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
删除并返回链表的头部结点
public E remove() {
return removeFirst();
}
将参数元素连接到链表尾部
public boolean offer(E e) {
return add(e);
}
将参数元素连接到链表头部
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
将参数元素连接到链表尾部
public boolean offerLast(E e) {
addLast(e);
return true;
}
返回链表的头部结点
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
返回链表的尾部结点
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
删除并返回链表的头部结点
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
删除并返回链表的头部结点
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
将参数元素连接到链表头部
public void push(E e) {
addFirst(e);
}
删除并返回链表的头部结点
public E pop() {
return removeFirst();
}
删除参数元素在链表中的第一次出现
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
删除参数元素在链表中的最后一次出现
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
浅拷贝
public Object clone() {
LinkedList<E> clone = superClone();
// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;
// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);
return clone;
}